List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3412942/publications.pdf Version: 2024-02-01

Πιίλι Πεβνλτή

#	Article	IF	CITATIONS
1	Study of Schwarzschild-like black hole in the infinitely extended particles theory: Shadow. International Journal of Modern Physics A, 2022, 37, .	1.5	Ο
2	Reconstruction of extended <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e2072" altimg="si167.svg"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi) etqq<="" td="" tj=""><td>0004r.øgBT /</td><td>Overlock 10 T</td></mml:mi)></mml:mrow></mml:mrow></mml:math>	0004r.øgBT /	Overlock 10 T
3	gravity from other modified gravity models. Physics of the Dark Universe, 2022, 35, 100926. Cosmological analysis of noninteracting and interacting generalized ghost dark energy in Einstein–Aether gravity theory. International Journal of Modern Physics A, 2022, 37, .	1.5	0
4	Destroying Kerr–Newman-Nut-Quintessence black hole. Modern Physics Letters A, 2022, 37, .	1.2	0
5	Gravitational lensing by some parametrizations of dark energy in the universe. International Journal of Modern Physics A, 2022, 37, .	1.5	0
6	Thermodynamics of Power–Maxwell charged AdS black holes with quintessence in Rastall gravity: Heat engine. International Journal of Modern Physics A, 2022, 37, .	1.5	0
7	Modified cosmic Chaplygin AdS black hole. Modern Physics Letters A, 2022, 37, .	1.2	4
8	Fluid accretion upon higher-dimensional wormhole and black hole for parameterized deceleration parameter. International Journal of Geometric Methods in Modern Physics, 2022, 19, .	2.0	5
9	Accretions of Tsallis, Rényi and Sharma–Mittal dark energies onto higher-dimensional Schwarzschild black hole and Morris–Thorne wormhole. Modern Physics Letters A, 2021, 36, 2150081.	1.2	2
10	Charged gravastars in Rastall-Rainbow gravity. European Physical Journal Plus, 2021, 136, 1.	2.6	21
11	Roles of modified Chaplygin–Jacobi and Chaplygin–Abel gases in FRW universe. International Journal of Modern Physics A, 2021, 36, .	1.5	4
12	Reconstruction of DBI-essence dark energy with <i>f</i> (<i>R</i>) gravity and its effect on black hole and wormhole mass accretion. Modern Physics Letters A, 2021, 36, .	1.2	4
13	Study on Anisotropic Strange Stars in f (T ,) Tj E	TQq1 1 0.7	84314 rgBT /(
14	Bouncing cosmology for entropy corrected models in Hořava–Lifshitz gravity and fractal universe. European Physical Journal Plus, 2020, 135, 1.	2.6	6
15	Thermodynamics of FRW Universe: Heat engine. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 810, 135807.	4.1	10
16	Accretion of Some Classes of Holographic DE onto Higher-Dimensional Schwarzschild Black Holes. Gravitation and Cosmology, 2020, 26, 75-81.	1.1	7
17	Thermodynamic black hole with modified Chaplygin gas as a heat engine. European Physical Journal Plus, 2020, 135, 1.	2.6	14
18	Nature of Higher-Dimensional Wormhole Mass Due to Accretion of Entropy Corrected Holographic and New Agegraphic Dark Energies. Gravitation and Cosmology, 2020, 26, 285-295.	1.1	4

#	Article	IF	CITATIONS
19	Gravitational waves for variable modified Chaplygin gas and some parametrizations of dark energy in the background of FRW universe. European Physical Journal Plus, 2020, 135, 1.	2.6	7
20	Constructions of f(R,G,?) gravity from some expansions of the Universe. International Journal of Modern Physics A, 2020, 35, 2050203.	1.5	5
21	Bouncing universe in the contexts of generalized cosmic Chaplygin gas and variable modified Chaplygin gas. Canadian Journal of Physics, 2019, 97, 286-296.	1.1	4
22	Parametrizations of dark energy models in the background of general non-canonical scalar field in D-dimensional fractal universe. European Physical Journal C, 2019, 79, 1.	3.9	7
23	Tsallis, Rényi and Sharma-Mittal holographic and new agegraphic dark energy models in D-dimensional fractal universe. European Physical Journal Plus, 2019, 134, 1.	2.6	28
24	Study of QCD generalized ghost dark energy in FRW universe. European Physical Journal C, 2019, 79, 1.	3.9	6
25	Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes. Gravitation and Cosmology, 2019, 25, 196-204.	1.1	19
26	Charge gravastars in f(T) modified gravity. European Physical Journal C, 2019, 79, 1.	3.9	25
27	Collision of particles near charged MSW black hole in 2 + 1 dimensions. Modern Physics Letters A, 2019, 34, 1950127.	1.2	2
28	Parameterizing Dark Energy Models and Study of Finite Time Future Singularities. Advances in High Energy Physics, 2019, 2019, 1-12.	1.1	1
29	Study of anisotropic compact stars with quintessence field and modified chaplygin gas in f(T) gravity. European Physical Journal C, 2019, 79, 1.	3.9	36
30	Analysis of interacting entropy-corrected holographic and new agegraphic dark energies. International Journal of Modern Physics D, 2018, 27, 1850035.	2.1	0
31	A Note on Equivalence Among Various Scalar Field Models of Dark Energies. International Journal of Theoretical Physics, 2017, 56, 2413-2422.	1.2	0
32	Analysing Hessence Intermediate and Logamediate Universe in Loop Quantum Cosmological Background. International Journal of Theoretical Physics, 2017, 56, 1771-1783.	1.2	0
33	Dynamical System Analysis of Interacting Hessence Dark Energy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>T</mml:mi><mml:mo) 0.784314="" 1="" 10="" 17<="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2 Td (stre</td><td>chy="false"></td></mml:mo)></mml:mo </mml:math 	2 Td (stre	chy="false">
34	Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole. Annals of Physics, 2016, 372, 449-456.	2.8	13
35	Reconstructions of f(T) gravity from entropy-corrected holographic and new agegraphic dark energy models in power-law and logarithmic versions. European Physical Journal C, 2016, 76, 1.	3.9	14
36	Effects of thermal fluctuations on the thermodynamics of modified Hayward black hole. European Physical Journal C, 2016, 76, 1.	3.9	100

#	Article	IF	CITATIONS
37	Co-Existence of Modified Chaplygin Gas and Other Dark Energies in the Framework of Fractal Universe. International Journal of Theoretical Physics, 2016, 55, 2668-2681.	1.2	8
38	Study of Entropy-corrected Logarithmic and Power-law Versions of Pilgrim Dark Energy. International Journal of Theoretical Physics, 2016, 55, 1285-1299.	1.2	4
39	Correspondence of F-Essence with Holographic and New Agegraphic Dark Energy Models. International Journal of Theoretical Physics, 2016, 55, 698-705.	1.2	4
40	Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy. European Physical Journal C, 2015, 75, 1.	3.9	9
41	Accretion of dark energy onto higher dimensional charged BTZ black hole. European Physical Journal C, 2015, 75, 1.	3.9	13
42	Correspondence between Generalized Dark Energy and Scalar Field Dark Energies. International Journal of Theoretical Physics, 2015, 54, 2240-2254.	1.2	2
43	Correspondence Between Einstein-Aether Gravity and Scalar Field Dark Energies. International Journal of Theoretical Physics, 2015, 54, 2150-2169.	1.2	1
44	Accretion and evaporation of modified Hayward black hole. European Physical Journal C, 2015, 75, 1.	3.9	50
45	Accretions of dark matter and dark energy onto (n + 2 \$n+2\$)-dimensional Schwarzschild black hole and Morris-Thorne wormhole. Astrophysics and Space Science, 2015, 360, 1.	1.4	14
46	Reconstructing f(R), f(G), f(T), and Einstein-Aether gravities from entropy-corrected (m,n) type pilgrim dark energy. Astrophysics and Space Science, 2015, 355, 405-411.	1.4	11
47	Generalized Second Law of Thermodynamics of Evolving Wormhole with Entropy Corrections. International Journal of Theoretical Physics, 2015, 54, 1750-1761.	1.2	4
48	Observational Constraints of Red-shift Parametrization Parameters of Dark Energy in Horava-Lifshitz Gravity. International Journal of Theoretical Physics, 2015, 54, 341-357.	1.2	4
49	Observational Constraints of Modified Chaplygin Gas in Chern-Simons Gravity. International Journal of Theoretical Physics, 2015, 54, 22-35.	1.2	3
50	Constraining the Parameters of Modified Chaplygin Gas in Einstein-Aether Gravity. Advances in High Energy Physics, 2014, 2014, 1-8.	1.1	4
51	Reconstructions of Einstein-Aether Gravity from Ordinary and Entropy-Corrected Versions of Holographic and New Agegraphic Dark Energy Models. Advances in High Energy Physics, 2014, 2014, 1-10.	1.1	0
52	Reconstructions of scalar field dark energy models from new holographic dark energy in Galileon universe. European Physical Journal Plus, 2014, 129, 1.	2.6	5
53	Reconstruction of the Einstein-Aether gravity from other modified gravity models. European Physical Journal Plus, 2014, 129, 1.	2.6	4
54	Gravitational collapse in Vaidya space–time for Galileon gravity theory. Canadian Journal of Physics, 2014, 92, 1474-1480.	1.1	11

#	Article	IF	CITATIONS
55	Constraining the Parameters of New Variable Modified Chaplygin Gas Model. International Journal of Theoretical Physics, 2014, 53, 1821-1831.	1.2	1
56	Thermodynamic study of non-linear electrodynamics in loop quantum cosmology. Astrophysics and Space Science, 2014, 350, 813-819.	1.4	1
5 7	Thermodynamics in Higher Dimensional Vaidya Space-Time. International Journal of Theoretical Physics, 2014, 53, 2108-2117.	1.2	3
58	Reconstruction of f(G) gravity with ordinary and entropy-corrected (m,n)-type holographic dark energy model. European Physical Journal Plus, 2014, 129, 1.	2.6	5
59	Correspondence of F-essence with Chaplygin gas cosmology. European Physical Journal Plus, 2014, 129, 1.	2.6	7
60	Gravitational collapse in Husain space-time for Brans-Dicke gravity theory with power-law potential. Astrophysics and Space Science, 2014, 354, 597-606.	1.4	19
61	Constraining parameters of generalized cosmic Chaplygin gas in loop quantum cosmology. Astrophysics and Space Science, 2014, 354, 651-665.	1.4	6
62	Thermodynamics of Evolving Lorentzian Wormhole at Apparent and Event Horizons. International Journal of Theoretical Physics, 2014, 53, 4083-4094.	1.2	5
63	New Holographic Dark Energy in Chern-Simons Gravity and Cosmography. International Journal of Theoretical Physics, 2014, 53, 4275-4290.	1.2	2
64	Accretions of various types of dark energies onto Morris–Thorne wormhole. European Physical Journal C, 2014, 74, 1.	3.9	8
65	Observational constraints of homogeneous higher-dimensional cosmology with modified Chaplygin gas. European Physical Journal Plus, 2013, 128, 1.	2.6	4
66	Constraining redshift parametrization parameters of dark energy: loop quantum gravity as back ground. European Physical Journal C, 2013, 73, 1.	3.9	7
67	Fractional action cosmology: some dark energy models in emergent, logamediate, and intermediate scenarios of the universe. Journal of Theoretical and Applied Physics, 2013, 7, 1.	1.4	26
68	Roles of Different Forms of Scale Factor in Non-linear Electrodynamics for Accelerating Universe. International Journal of Theoretical Physics, 2013, 52, 2485-2495.	1.2	1
69	Role of Entropy-Corrected New Agegraphic Dark Energy in Hořava-Lifshitz Gravity. International Journal of Theoretical Physics, 2013, 52, 654-667.	1.2	Ο
70	Statefinder and Om Diagnostics for Interacting New Holographic Dark Energy Model and Generalized Second Law of Thermodynamics. International Journal of Theoretical Physics, 2013, 52, 1250-1264.	1.2	19
71	Correspondence between fermionic field and other dark energies. Astrophysics and Space Science, 2013, 345, 399-403.	1.4	10
72	Observational study of higher dimensional magnetic universe in non-linear electrodynamics. Astrophysics and Space Science, 2013, 346, 291-299.	1.4	5

#	Article	IF	CITATIONS
73	Dynamical System Analysis for Anisotropic Universe in Brans-Dicke Theory. International Journal of Theoretical Physics, 2013, 52, 3353-3365.	1.2	3
74	Variable Modified Chaplygin Gas in Anisotropic Universe with Kaluza-Klein Metric. International Journal of Theoretical Physics, 2013, 52, 862-876.	1.2	2
75	Role of a chameleon field in the presence of variable modified Chaplygin gas in Brans–Dicke theory. Canadian Journal of Physics, 2012, 90, 131-135.	1.1	1
76	Presence of dark energy and dark matter: does cosmic acceleration signifies a weak gravitational collapse?. Astrophysics and Space Science, 2012, 342, 557-574.	1.4	18
77	Study of Thermodynamic Quantities in Generalized Gravity Theories. International Journal of Theoretical Physics, 2012, 51, 3168-3185.	1.2	2
78	Natures of Statefinder Parameters and Om Diagnostic for Cardassian Universe in Hořava-Lifshitz Gravity. International Journal of Theoretical Physics, 2012, 51, 3701-3720.	1.2	1
79	Accretion of new variable modified Chaplygin gas and generalized cosmic Chaplygin gas onto Schwarzschild and Kerr–Newman black holes. European Physical Journal C, 2012, 72, 1.	3.9	50
80	Dynamical study of DBI-essence in loop quantum cosmology and brane world. European Physical Journal C, 2012, 72, 1.	3.9	5
81	Observational constraints of modified Chaplygin gas in loop quantum cosmology. European Physical Journal C, 2012, 72, 1.	3.9	30
82	Statefinder Description in Generalized Holographic and Ricci Dark Energy Models. International Journal of Theoretical Physics, 2012, 51, 1155-1172.	1.2	0
83	The Effects of Tachyonic and Phantom Fields in the Intermediate and Logamediate Scenarios of the Anisotropic Universe. International Journal of Theoretical Physics, 2012, 51, 1224-1238.	1.2	3
84	Higher Dimensional Cosmology with Some Dark Energy Models in Emergent, Logamediate and Intermediate Scenarios of the Universe. International Journal of Theoretical Physics, 2012, 51, 2180-2207.	1.2	2
85	Statefinder Parameters for Different Dark Energy Models with Variable G Correction in Kaluza-Klein Cosmology. International Journal of Theoretical Physics, 2012, 51, 2246-2255.	1.2	12
86	Dynamics of modified Chaplygin gas in brane world scenario: phase plane analysis. Astrophysics and Space Science, 2012, 339, 53-64.	1.4	26
87	Some features of new holographic dark energy model in Hořava-Lifshitz gravity. Astrophysics and Space Science, 2012, 339, 65-78.	1.4	0
88	Nature of singularity formed by the gravitational collapse in Husain space-time with electromagnetic field and scalar field. Astrophysics and Space Science, 2012, 339, 135-141.	1.4	15
89	Generalized second law of thermodynamics for FRW cosmology with power-law entropy correction. European Physical Journal C, 2012, 72, 1.	3.9	33
90	Dilaton Dark Energy Model in f(R), f(T) and Hořava-Lifshitz Gravities. International Journal of Theoretical Physics, 2012, 51, 405-417.	1.2	8

#	Article	IF	CITATIONS
91	Thermodynamics of Modified Chaplygin Gas and Tachyonic Field. International Journal of Theoretical Physics, 2012, 51, 565-576.	1.2	8
92	Study of Thermodynamics in Generalized Holographic and Ricci Dark Energy Models. International Journal of Theoretical Physics, 2012, 51, 577-588.	1.2	4
93	A Dark Energy Model with Generalized Uncertainty Principle in the Emergent, Intermediate and Logamediate Scenarios of the Universe. International Journal of Theoretical Physics, 2012, 51, 589-603.	1.2	11
94	Reconstruction of Potentials as Well as Dynamics of Scalar Fields in DGP Braneworld Model. International Journal of Theoretical Physics, 2012, 51, 639-651.	1.2	5
95	Fractional Action Cosmology: Emergent, Logamediate, Intermediate, Power Law Scenarios of the Universe and Generalized Second Law of Thermodynamics. International Journal of Theoretical Physics, 2012, 51, 812-837.	1.2	35
96	Validity of the Generalized Second Law of Thermodynamics in the Logamediate and Intermediate Scenarios of the Universe. Foundations of Physics, 2012, 42, 266-283.	1.3	10
97	Holographic dark energy interacting with two fluids and validity of generalized second law of thermodynamics. Astrophysics and Space Science, 2012, 337, 503-508.	1.4	11
98	Statefinder parameter for varying G in three fluid system. Astrophysics and Space Science, 2012, 337, 799-803.	1.4	11
99	Brans–Dicke theory and thermodynamical laws on apparent and event horizons. Canadian Journal of Physics, 2011, 89, 883-889.	1.1	18
100	Brans-Dicke theory in anisotropic models with a viscous fluid. Gravitation and Cosmology, 2011, 17, 280-283.	1.1	5
101	Emergent Scenario in Anisotropic Universe. International Journal of Theoretical Physics, 2011, 50, 80-87.	1.2	6
102	Correspondence Between Ricci and Other Dark Energies. International Journal of Theoretical Physics, 2011, 50, 315-324.	1.2	14
103	Validity of Thermodynamical Laws in Dark Energy Filled Universe. International Journal of Theoretical Physics, 2011, 50, 525-536.	1.2	5
104	Dynamics of Logamediate and Intermediate Scenarios inÂtheÂDark Energy Filled Universe. International Journal of Theoretical Physics, 2011, 50, 799-832.	1.2	5
105	Accelerating Universe in Brans-Dicke Theory in Presence of Chaplygin Gas. International Journal of Theoretical Physics, 2011, 50, 1536-1542.	1.2	2
106	FRW Cosmology with Variable G and \hat{I} . International Journal of Theoretical Physics, 2011, 50, 1602-1613.	1.2	39
107	Emergent Universe with Exotic Matter in Brane World Scenario. International Journal of Theoretical Physics, 2011, 50, 2892-2898.	1.2	14
108	Interaction Between Tachyon and Hessence (or Hantom) Dark Energies. International Journal of Theoretical Physics, 2011, 50, 3166-3175.	1.2	1

#	Article	IF	CITATIONS
109	Generalized Second Law of Thermodynamics in Emergent Universe. International Journal of Theoretical Physics, 2011, 50, 3415-3420.	1.2	0
110	Interacting modified Chaplygin gas in loop quantum cosmology. Astrophysics and Space Science, 2011, 333, 3-8.	1.4	36
111	Dynamics of interacting phantom and quintessence dark energies. Astrophysics and Space Science, 2011, 334, 243-248.	1.4	35
112	Correspondence between DBI-essence and modified Chaplygin gas and the generalized second law of thermodynamics. Astrophysics and Space Science, 2011, 335, 545-552.	1.4	42
113	Gravitational collapse in generalized Vaidya space-time for Lovelock gravity theory. Astrophysics and Space Science, 2011, 335, 505-513.	1.4	23
114	Thermodynamics in quasi-spherical Szekeres space-time. Europhysics Letters, 2011, 94, 29001.	2.0	8
115	THERMODYNAMICAL LAWS IN HOÅ~AVA–LIFSHITZ GRAVITY. International Journal of Modern Physics D, 2011, 20, 1191-1204.	2.1	10
116	Role of chameleon field in accelerating Universe. Astrophysics and Space Science, 2010, 326, 53-60.	1.4	12
117	Interaction between phantom field and modified Chaplygin gas. Astrophysics and Space Science, 2010, 326, 155-158.	1.4	10
118	Interaction Between DBI-Essence and Other Dark Energies. International Journal of Theoretical Physics, 2010, 49, 1465-1480.	1.2	8
119	Higher Dimensional Cosmology withÂNormalÂScalarÂField and Tachyonic Field. International Journal of Theoretical Physics, 2010, 49, 1693-1698.	1.2	8
120	GENERALIZED SECOND LAW OF THERMODYNAMICS IN THE PRESENCE OF INTERACTING DBI-ESSENCE AND OTHER DARK ENERGIES. International Journal of Modern Physics A, 2010, 25, 5557-5566.	1.5	9
121	Effect of modified Chaplygin gas in anisotropic universe. Astrophysics and Space Science, 2009, 321, 53-56.	1.4	3
122	Statefinder description of a cosmological model based onÂaÂmixture of five fluids. Astrophysics and Space Science, 2009, 324, 61-66.	1.4	1
123	Holographic dark energy scenario and variable modified Chaplygin gas. Astrophysics and Space Science, 2009, 319, 183-185.	1.4	30
124	Role of Brans-Dicke Theory withÂorÂwithoutÂSelf-Interacting Potential inÂCosmicÂAcceleration. International Journal of Theoretical Physics, 2009, 48, 232-247.	1.2	37
125	Accelerating Universe with a Special Form ofÂDecelerating Parameter. International Journal of Theoretical Physics, 2009, 48, 351-356.	1.2	17
126	Gravitational collapse in higher dimensional Husain space–time. General Relativity and Gravitation, 2008, 40, 749-763.	2.0	12

#	Article	IF	CITATIONS
127	Role of Modified Chaplygin Gas as an Unified Dark Matter-Dark Energy Model in Collapsing Spherically Symmetric Dust Cloud. International Journal of Theoretical Physics, 2008, 47, 2663-2671.	1.2	16
128	Effect of dynamical cosmological constant in presence of modified Chaplygin gas for accelerating universe. Astrophysics and Space Science, 2008, 313, 409-417.	1.4	4
129	Junction conditions and consequences of quasi-spherical space-time with electro-magnetic field and Vaidya metric. Astrophysics and Space Science, 2008, 313, 431-436.	1.4	17
130	Acceleration of the Universe in presence of tachyonic field. Astrophysics and Space Science, 2008, 314, 41-44.	1.4	20
131	Scalar field cosmology with polytropic and causalÂviscous fluids. Astrophysics and Space Science, 2008, 314, 347-350.	1.4	0
132	Role of a tachyonic field in accelerating the Universe inÂtheÂpresence of aÂperfect fluid. Astrophysics and Space Science, 2008, 315, 73-78.	1.4	3
133	IS MODIFIED CHAPLYGIN GAS ALONG WITH BAROTROPIC FLUID RESPONSIBLE FOR ACCELERATION OF THE UNIVERSE?. Modern Physics Letters A, 2007, 22, 1805-1812.	1.2	14
134	THE EFFECT OF PRESSURE IN HIGHER DIMENSIONAL QUASI-SPHERICAL GRAVITATIONAL COLLAPSE. International Journal of Modern Physics D, 2007, 16, 833-846.	2.1	4
135	Variable modified Chaplygin gas and acceleratingÂuniverse. Astrophysics and Space Science, 2007, 312, 295-299.	1.4	57
136	GRAVITATIONAL COLLAPSE DUE TO DARK MATTER AND DARK ENERGY IN THE BRANEWORLD SCENARIO. International Journal of Modern Physics D, 2006, 15, 1225-1236.	2.1	18
137	SPACETIME CURVATURE COUPLING OF SPINORS IN EARLY UNIVERSE: NEUTRINO ASYMMETRY AND A POSSIBLE SOURCE OF BARYOGENESIS. Modern Physics Letters A, 2006, 21, 399-408.	1.2	26
138	Reconstructions of f(P) gravity from (m,n) type ordinary and entropy-corrected holographic and Pilgrim dark energy models. International Journal of Modern Physics A, 0, , .	1.5	1
139	Constructions of entropy and modified Friedmann equations in gravity theories. International Journal of Geometric Methods in Modern Physics, 0, , .	2.0	0