Charlotte Bay Hasager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3412779/publications.pdf

Version: 2024-02-01

159525 155592 3,136 67 30 citations h-index g-index papers

73 73 73 2723 docs citations times ranked citing authors all docs

55

#	Article	IF	Citations
1	Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 2002, 81, 179-193.	4.6	308
2	Wake effects of large offshore wind farms identified from satellite SAR. Remote Sensing of Environment, 2005, 98, 251-268.	4.6	184
3	Incorporating remote sensing data in physically based distributed agro-hydrological modelling. Journal of Hydrology, 2004, 287, 279-299.	2.3	142
4	Wind resource assessment from C-band SAR. Remote Sensing of Environment, 2006, 105, 68-81.	4.6	130
5	Wind climate estimation using WRF model output: method and model sensitivities over the sea. International Journal of Climatology, 2015, 35, 3422-3439.	1.5	124
6	Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sensing of Environment, 2015, 156, 247-263.	4.6	124
7	Offshore wind profiling using light detection and ranging measurements. Wind Energy, 2009, 12, 105-124.	1.9	121
8	Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling. Agricultural and Forest Meteorology, 2003, 114, 153-173.	1.9	104
9	The wind energy potential of Iceland. Renewable Energy, 2014, 69, 290-299.	4.3	104
10	Update of a Footprint-Based Approach for the Characterisation of Complex Measurement Sites. Boundary-Layer Meteorology, 2006, 118, 635-655.	1.2	97
11	SAR-Based Wind Resource Statistics in the Baltic Sea. Remote Sensing, 2011, 3, 117-144.	1.8	97
12	Spatial and temporal variability of winds in the Northern European Seas. Renewable Energy, 2013, 57, 200-210.	4.3	92
13	Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2008, 129, 479-495.	1.2	88
14	Surfaceâ€flux aggregation in heterogeneous terrain. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 2075-2102.	1.0	86
15	Ten Years of Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark. Boundary-Layer Meteorology, 2016, 158, 1-26.	1.2	72
16	Leading edge erosion of wind turbine blades: Understanding, prevention and protection. Renewable Energy, 2021, 169, 953-969.	4.3	72
17	Remote Sensing Observation Used in Offshore Wind Energy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1, 67-79.	2.3	71
18	Remote sensing based evapotranspiration and runoff modeling of agricultural, forest and urban flux sites in Denmark: From field to macro-scale. Journal of Hydrology, 2009, 377, 300-316.	2.3	64

#	Article	IF	Citations
19	Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events. Wind Energy Science, 2018, 3, 729-748.	1.2	62
20	Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea. Remote Sensing, 2015, 7, 467-487.	1.8	61
21	Wind Farm Wake: The Horns Rev Photo Case. Energies, 2013, 6, 696-716.	1.6	60
22	Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theoretical and Applied Climatology, 2010, 100, 325-335.	1.3	59
23	Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms. Energies, 2015, 8, 5413-5439.	1.6	55
24	SST diurnal variability in the North Sea and the Baltic Sea. Remote Sensing of Environment, 2012, 121, 159-170.	4.6	50
25	Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas. Remote Sensing of Environment, 2015, 168, 349-359.	4.6	49
26	Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite. Wind Energy, 2014, 17, 123-140.	1.9	48
27	Hub Height Ocean Winds over the North Sea Observed by the NORSEWInD Lidar Array: Measuring Techniques, Quality Control and Data Management. Remote Sensing, 2013, 5, 4280-4303.	1.8	42
28	Effective Roughness Calculated from Satellite-Derived Land Cover Maps and Hedge-Information used in a Weather Forecasting Model. Boundary-Layer Meteorology, 2003, 109, 227-254.	1.2	41
29	Wind Class Sampling of Satellite SAR Imagery for Offshore Wind Resource Mapping. Journal of Applied Meteorology and Climatology, 2010, 49, 2474-2491.	0.6	41
30	Wind Farm Wake: The 2016 Horns Rev Photo Case. Energies, 2017, 10, 317.	1.6	32
31	Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters. Remote Sensing, 2013, 5, 1956-1973.	1.8	31
32	Summer algal blooms in a coastal ecosystem: the role of atmospheric deposition versus entrainment fluxes. Estuarine, Coastal and Shelf Science, 2005, 62, 595-608.	0.9	29
33	Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas. Renewable Energy, 2020, 149, 91-102.	4.3	29
34	Regional Fluxes Of Momentum And Sensible Heat Over A Sub-Arctic Landscape During Late Winter. Boundary-Layer Meteorology, 2001, 99, 489-507.	1.2	25
35	Offshore winds mapped from satellite remote sensing. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 594-603.	1.9	24
36	Applications of satellite winds for the offshore wind farm site Anholt. Wind Energy Science, 2018, 3, 573-588.	1.2	24

#	Article	IF	CITATIONS
37	Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China. Energies, 2014, 7, 3339-3354.	1.6	23
38	Europe's offshore winds assessed with synthetic aperture radar, ASCAT and WRF. Wind Energy Science, 2020, 5, 375-390.	1.2	22
39	Transmission of wave energy through an offshore wind turbine farm. Coastal Engineering, 2013, 82, 25-46.	1.7	20
40	On offshore wind energy mapping using satellite SAR. Canadian Journal of Remote Sensing, 2002, 28, 80-89.	1.1	19
41	Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea. Energies, 2021, 14, 1959.	1.6	18
42	How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics. Energies, 2016, 9, 437.	1.6	17
43	The Role of Logistics in Practical Levelized Cost of Energy Reduction Implementation and Government Sponsored Cost Reduction Studies: Day and Night in Offshore Wind Operations and Maintenance Logistics. Energies, 2017, 10, 464.	1.6	17
44	Offshore new European wind atlas. Journal of Physics: Conference Series, 2018, 1037, 052007.	0.3	15
45	Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar. Wind Energy, 2013, 16, 865-878.	1.9	13
46	Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea. Remote Sensing, 2016, 8, 769.	1.8	13
47	The (R)evolution of China: Offshore Wind Diffusion. Energies, 2017, 10, 2153.	1.6	10
48	Rainfall Kinetic Energy in Denmark: Relationship with Drop Size, Wind Speed, and Rain Rate. Journal of Hydrometeorology, 2020, 21, 1621-1637.	0.7	10
49	Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia. Atmospheric Measurement Techniques, 2022, 15, 4107-4124.	1.2	10
50	IRS-1C LISS III land cover maps at different spatial resolutions used in real-time accidental air pollution deposition modelling. Remote Sensing of Environment, 2001, 76, 326-336.	4.6	9
51	On extreme atmospheric and marine nitrogen fluxes and chlorophyll-a levels in the Kattegat Strait. Atmospheric Chemistry and Physics, 2003, 3, 797-812.	1.9	9
52	Mapping Offshore Winds Around Iceland Using Satellite Synthetic Aperture Radar and Mesoscale Model Simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 5541-5552.	2.3	9
53	An Overview of Offshore Wind Farm Design. , 2016, , 337-346.		9
54	Brief communication: Nowcasting of precipitation for leading-edge-erosion-safe mode. Wind Energy Science, 2020, 5, 977-981.	1.2	9

#	Article	IF	Citations
55	Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades. Renewable Energy, 2022, 197, 776-789.	4.3	9
56	Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea. Remote Sensing, 2013, 5, 6096-6115.	1.8	8
57	Satellite Remote Sensing in Offshore Wind Energy. Energy Systems, 2013, , 711-745.	0.5	5
58	Editorial: Surface fluxes over land in complex terrain. Theoretical and Applied Climatology, 2005, 80, 79-79.	1.3	4
59	Editorial for the Special Issue "Remote Sensing of Atmospheric Conditions for Wind Energy Applications― Remote Sensing, 2019, 11, 781.	1.8	3
60	Variation of leading-edge-erosion relevant precipitation parameters with location and weather type. Meteorologische Zeitschrift, 2021, 30, 251-269.	0.5	2
61	Wind Energy Resources of the South Baltic Sea. , 2011, , .		2
62	Spaceborne Earth Observation for Offshore Wind Energy Applications., 2021,,.		2
63	Effect of dropâ€size parameterization and rain amount on bladeâ€lifetime calculations considering leadingâ€edge erosion. Wind Energy, 2022, 25, 952-967.	1.9	2
64	Comparing Offshore Ferry Lidar Measurements in the Southern Baltic Sea with ASCAT, FINO2 and WRF. Remote Sensing, 2022, 14, 1427.	1.8	2
65	Satellite eye for the galathea 3 ship expedition: global tour 2006-2007. , 2007, , .		1
66	High-resolution wind fields from synthetic aperture radars and numerical models for offshore wind farming. Elsevier Oceanography Series, 2003, , 450-457.	0.1	0
67	Offshore winds using remote sensing techniques. Journal of Physics: Conference Series, 2007, 75, 012038.	0.3	0