Komivi Akutse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3412574/publications.pdf

Version: 2024-02-01

361045 360668 1,630 81 20 35 citations h-index g-index papers 83 83 83 1382 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Farmers' knowledge and management practices of cereal, legume and vegetable insect pests, and willingness to pay for biopesticides. International Journal of Pest Management, 2022, 68, 204-216.	0.9	17
2	OUP accepted manuscript. Journal of Economic Entomology, 2022, 115, 46-55.	0.8	8
3	Comparative microbiome analysis of <i>Diaphorina citri</i> and its associated parasitoids <i>Tamarixia radiata</i> and <i>Diaphorencyrtus aligarhensis</i> reveals <i>Wolbachia</i> as a dominant endosymbiont. Environmental Microbiology, 2022, 24, 1638-1652.	1.8	6
4	The Endophyte Trichoderma asperellum M2RT4 Induces the Systemic Release of Methyl Salicylate and (Z)-jasmone in Tomato Plant Affecting Host Location and Herbivory of Tuta absoluta. Frontiers in Plant Science, 2022, 13, 860309.	1.7	11
5	Endophytically colonized <i>Citrus limon</i> seedlings by <i>Beauveria bassiana</i> hampered development, reproduction and progeny fitness of <i>Diaphorina citri</i> Journal of Applied Entomology, 2022, 146, 229-242.	0.8	6
6	Phytopathogens Increase the Preference of Insect Vectors to Volatiles Emitted by Healthy Host Plants. Journal of Agricultural and Food Chemistry, 2022, 70, 5262-5269.	2.4	3
7	Prioritization of invasive alien species with the potential to threaten agriculture and biodiversity in Kenya through horizon scanning. Biological Invasions, 2022, 24, 2933-2949.	1.2	4
8	Genetic diversity of <i>Diaphorina citri</i> (Hemiptera: Liviidae) unravels phylogeographic structure and invasion history of eastern African populations. Ecology and Evolution, 2022, 12, .	0.8	4
9	Compatibility and efficacy of Metarhizium anisopliae and sex pheromone for controlling Thaumatotibia leucotreta. Journal of Pest Science, 2021, 94, 393-407.	1.9	3
10	Phyto-derivatives: an efficient eco-friendly way to manage Trogoderma granarium (Everts) (Coleoptera: Dermestidae). International Journal of Tropical Insect Science, 2021, 41, 915-926.	0.4	9
11	Infection of the Stable Fly, Stomoxys calcitrans, L. 1758 (Diptera: Muscidae) by the Entomopathogenic Fungi Metarhizium anisopliae (Hypocreales: Clavicipitaceae) Negatively Affects Its Survival, Feeding Propensity, Fecundity, Fertility, and Fitness Parameters. Frontiers in Fungal Biology, 2021, 2, .	0.9	4
12	Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genomics, 2021, 22, 179.	1.2	37
13	Mitogenomic analysis of diversity of key whitefly pests in Kenya and its implication to their sustainable management. Scientific Reports, 2021, 11, 6348.	1.6	5
14	Whitefly-induced tomato volatiles enhance the virulence of Lecanicillium lecanii. Journal of Invertebrate Pathology, 2021, 183, 107623.	1.5	4
15	Paenibacillus polymyxa causes yellow withered spot disease in Dracaena trifasciata in the South of China. Australasian Plant Pathology, 2021, 50, 603-608.	0.5	O
16	The Survival and Parasitism Rate of Tamarixia radiata (Hymenoptera: Eulophidae) on Its Host Exposed to Beauveriabassiana (Ascomycota: Hypocreales). Agronomy, 2021, 11, 1496.	1.3	3
17	Model Application of Entomopathogenic Fungi as Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for Next-Generation Sustainable Agriculture. Frontiers in Plant Science, 2021, 12, 741804.	1.7	58
18	Mechanism of Action of Endophytic Fungi Hypocrea lixii and Beauveria bassiana in Phaseolus vulgaris as Biopesticides against Pea Leafminer and Fall Armyworm. Molecules, 2021, 26, 5694.	1.7	4

#	Article	IF	CITATIONS
19	General Limitations to Endophytic Entomopathogenic Fungi Use as Plant Growth Promoters, Pests and Pathogens Biocontrol Agents. Plants, 2021, 10, 2119.	1.6	21
20	Genetic Diversity of Tamarixia radiata Populations and Their Associated Endosymbiont Wolbachia Species from China. Agronomy, 2021, 11, 2018.	1.3	1
21	Virulence and horizontal transmission of Metarhizium anisopliae by the adults of the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and the efficacy of oil formulations against its nymphs. Heliyon, 2021, 7, e08277.	1.4	6
22	Effectiveness of Entomopathogenic Fungi on Immature Stages and Feeding Performance of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. Insects, 2021, 12, 1044.	1.0	36
23	Endophytic Colonisation of Solanum lycopersicum and Phaseolus vulgaris by Fungal Endophytes Promotes Seedlings Growth and Hampers the Reproductive Traits, Development, and Survival of the Greenhouse Whitefly, Trialeurodes vaporariorum. Frontiers in Plant Science, 2021, 12, 771534.	1.7	3
24	Temperature-dependent modelling and spatial prediction reveal suitable geographical areas for deployment of two Metarhizium anisopliae isolates for Tuta absoluta management. Scientific Reports, 2021, 11, 23346.	1.6	5
25	Chemical additives enhance the activity of a Bt â€based biopesticide targeting the beet webworm larvae. Journal of Applied Entomology, 2020, 144, 26-32.	0.8	0
26	Metarhizium anisopliae and Beauveria bassiana: Pathogenicity, Horizontal Transmission, and Their Effects on Reproductive Potential of Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2020, 113, 660-668.	0.8	25
27	Biopesticide Research and Product Development in Africa for Sustainable Agriculture and Food Security – Experiences From the International Centre of Insect Physiology and Ecology (icipe). Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	46
28	Combining insect pathogenic fungi and a pheromone trap for sustainable management of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology, 2020, 177, 107477.	1.5	16
29	Characterization of mycotoxins from entomopathogenic fungi (Cordyceps fumosorosea) and their toxic effects to the development of asian citrus psyllid reared on healthy and diseased citrus plants. Toxicon, 2020, 188, 39-47.	0.8	21
30	Fungal Endophyte Communities of Crucifer Crops Are Seasonally Dynamic and Structured by Plant Identity, Plant Tissue and Environmental Factors. Frontiers in Microbiology, 2020, 11, 1519.	1.5	12
31	Citronellal perception and transmission by Anopheles gambiae s.s. (Diptera: Culicidae) females. Scientific Reports, 2020, 10, 18615.	1.6	6
32	Entomopathogenic Fungi as Endophytes for Biological Control of Subterranean Termite Pests Attacking Cocoa Seedlings. Journal of Fungi (Basel, Switzerland), 2020, 6, 126.	1.5	16
33	Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields. Scientific Reports, 2020, 10, 15130.	1.6	11
34	Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. Journal of Applied Entomology, 2020, 144, 777-787.	0.8	16
35	Integrated Management of Aphis craccivora in Cowpea Using Intercropping and Entomopathogenic Fungi under Field Conditions. Journal of Fungi (Basel, Switzerland), 2020, 6, 60.	1.5	10
36	Characterization and risk assessment of the invasive papaya mealybug, <i>Paracoccus marginatus</i> , in Kenya under changing climate. Journal of Applied Entomology, 2020, 144, 442-458.	0.8	9

#	Article	IF	CITATIONS
37	Insights in the Global Genetics and Gut Microbiome of Black Soldier Fly, Hermetia illucens: Implications for Animal Feed Safety Control. Frontiers in Microbiology, 2020, 11, 1538.	1.5	34
38	Microbiome diversity inÂDiaphorina citriÂpopulations from Kenya and Tanzania shows links to China. PLoS ONE, 2020, 15, e0235348.	1.1	9
39	Effects of Seedling Age on Colonization Patterns of Citrus limon Plants by Endophytic Beauveria bassiana and Metarhizium anisopliae and Their Influence on Seedlings Growth. Journal of Fungi (Basel,) Tj ETQq1 1	1 0. 78431	.4 2g BT /Over
40	Immunocompetence of Gynaikothrips uzeli (Thysanoptera: Phlaeothripidae) populations from different latitudes against Beauveria bassiana (Hypocreales: Cordycipitaceae). Journal of Invertebrate Pathology, 2020, 171, 107343.	1.5	2
41	Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera:) Tj ETQq1 1 0.78431	4rgBT/O	verlock 10 Tf
42	Endophytic Beauveria bassiana in Foliar-Treated Citrus limon Plants Acting as a Growth Suppressor to Three Successive Generations of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects, 2019, 10, 176.	1.0	28
43	Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit Botrytis cinerea via Binding to G-Protein Coupled Receptors and Transmitting with cAMP-Signal Pathway of the Fungus. Journal of Agricultural and Food Chemistry, 2019, 67, 13706-13717.	2.4	7
44	Efficacy of aqueous and oil formulations of a specific Metarhizium anisopliae isolate against Aphis craccivora Koch, 1854 (Hemiptera: Aphididae) under field conditions. Journal of Applied Entomology, 2019, 143, 1182-1192.	0.8	6
45	Performance of Three Isolates of Metarhizium Anisopliae and Their Virulence against Zeugodacus Cucurbitae under Different Temperature Regimes, with Global Extrapolation of Their Efficiency. Insects, 2019, 10, 270.	1.0	23
46	Testing a co-formulation of CO2-releasing material with an entomopathogenic fungus for the management of subterranean termite pests. Mycological Progress, 2019, 18, 1201-1211.	0.5	6
47	Horizontal transmission of Metarhizium anisopliae between Spoladea recurvalis (Lepidoptera:) Tj ETQq1 1 0.7843 Pathogenesis, 2019, 131, 197-204.	314 rgBT /(1.3	
48	Ovicidal effects of entomopathogenic fungal isolates on the invasive Fall armyworm <i>Spodoptera frugiperda</i> (Lepidoptera: Noctuidae). Journal of Applied Entomology, 2019, 143, 626-634.	0.8	68
49	Interaction Between Chrysocharis flacilla and Diglyphus isaea (Hymenoptera: Eulophidae), Two Parasitoids of Liriomyza Leafminers. Journal of Economic Entomology, 2018, 111, 556-563.	0.8	4
50	Interaction Between Two Leafminer Parasitoids, Halticoptera arduine (Hymenoptera: Pteromalidae) and Diglyphus isaea (Hymenoptera: Eulophidae), in the Management of Liriomyza huidobrensis (Diptera:) Tj ETQq0 0 (ე იფშ T /Oა	ve d lock 10 Tf
51	Effects of Entomopathogenic fungi and <i>Bacillus thuringiensis</i> êbased biopesticides on <i>Spoladea recurvalis</i> (Lepidoptera: Crambidae). Journal of Applied Entomology, 2018, 142, 617-626.	0.8	30
52	Landscape ecology and expanding range of biocontrol agent taxa enhance prospects for diamondback moth management. A review. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	15
53	Susceptibilities of <i>Candidatus</i> Liberibacter asiaticusâ€infected and noninfected <i>DiaphorinaÂcitri</i> to entomopathogenic fungi and their detoxification enzyme activities under different temperatures. MicrobiologyOpen, 2018, 7, e00607.	1.2	11
54	Seasonal occurrence of amaranth Lepidopteran defoliators and effect of attractants and amaranth lines in their management. Journal of Applied Entomology, 2018, 142, 637-645.	0.8	6

#	Article	IF	Citations
55	Consequences of shade management on the taxonomic patterns and functional diversity of termites (Blattodea: Termitidae) in cocoa agroforestry systems. Ecology and Evolution, 2018, 8, 11582-11595.	0.8	16
56	Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite. BMC Microbiology, 2018, 18, 142.	1.3	10
57	Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiological Research, 2018, 217, 34-50.	2.5	95
58	Evaluation of the Entomopathogenic Fungi Metarhizium anisopliae, Beauveria bassiana and Isaria sp. for the Management of Aphis craccivora (Hemiptera: Aphididdae). Journal of Economic Entomology, 2018, 111, 1587-1594.	0.8	29
59	Acceptability and Suitability of Three Liriomyza Leafminer Species as Host for the Endoparasitoid Chrysocharis flacilla (Hymenoptera: Eulophidae). Journal of Economic Entomology, 2018, 111, 1137-1143.	0.8	3
60	Fungal Endophytes: Beyond Herbivore Management. Frontiers in Microbiology, 2018, 9, 544.	1.5	187
61	Bemisia tabaci-mediated facilitation in diversity of begomoviruses: Evidence from recent molecular studies. Microbial Pathogenesis, 2018, 123, 162-168.	1.3	23
62	Imidacloprid Pesticide Regulates Gynaikothrips uzeli (Thysanoptera: Phlaeothripidae) Host Choice Behavior and Immunity Against Lecanicillium lecanii (Hypocreales: Clavicipitaceae). Journal of Economic Entomology, 2018, 111, 2069-2075.	0.8	5
63	Effects of flower thrips (Thysanoptera: Thripidae) on nutritional quality of banana (Zingiberales:) Tj ETQq1 1 0.7	84314 rgB 1.1	T /gverlock 1
64	Acceptability and Suitability of Three Liriomyza Species as Host for the Endoparasitoid Halticoptera arduine (Hymenoptera: Pteromalidae). Environmental Entomology, 2018, 47, 684-691.	0.7	3
65	Endophytic effects of Aspergillus oryzae on radish (Raphanus sativus) and its herbivore, Plutella xylostella. Planta, 2018, 248, 705-714.	1.6	33
66	The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi. Scientific Reports, 2017, 7, 40494.	1.6	34
67	Molecular docking of protease from Metarhizium anisopliae and their toxic effect against model insect Galleria mellonella. Pesticide Biochemistry and Physiology, 2017, 138, 8-14.	1.6	13
68	Effects of different temperature regimes on survival of <i>Diaphorina citri</i> and its endosymbiotic bacterial communities. Environmental Microbiology, 2017, 19, 3439-3449.	1.8	39
69	Performance of Apanteles hemara (Hymenoptera: Braconidae) on two Amaranth Leaf-webbers: Spoladea recurvalis and Udea ferrugalis (Lepidoptera: Crambidae). Environmental Entomology, 2017, 46, 1284-1291.	0.7	10
70	Diaphorina citri Induces Huanglongbing-Infected Citrus Plant Volatiles to Repel and Reduce the Performance of Propylaea japonica. Frontiers in Plant Science, 2016, 07, 1969.	1.7	21
71	Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level. Toxicon, 2016, 120, 89-96.	0.8	17
72	Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. BioControl, 2016, 61, 741-753.	0.9	46

#	Article	IF	CITATIONS
73	<i>Liriomyza</i> Leafminer (Diptera: Agromyzidae) Parasitoid Complex in Different Agroecological Zones, Seasons, and Host Plants in Kenya. Environmental Entomology, 2016, 45, 357-366.	0.7	15
74	Morphological and Molecular Characterization of Vicia faba and Phaseolus vulgaris Seed-born Fungal Endophytes. Research Journal of Seed Science, 2016, 10, 1-16.	0.3	2
75	Species Composition, Distribution, and Seasonal Abundance of Liriomyza Leafminers (Diptera:) Tj ETQq1 1 0.7843 Environmental Entomology, 2015, 44, 223-232.	314 rgBT / 0.7	Overlock 10 18
76	Differential Effects of Pesticide Applications on Liriomyza huidobrensis (Diptera: Agromyzidae) and its Parasitoids on Pea in Central Kenya. Journal of Economic Entomology, 2015, 108, 662-671.	0.8	17
77	Interaction betweenPhaedrotoma scabriventrisNixon andOpius dissitusMuesebeck (Hymenoptera:) Tj ETQq1 1 0.7	784314 rg	gBT ₁₁ /Overloc
78	Interactions between Phaedrotoma scabriventris Nixon (Hymenoptera: Braconidae) and Diglyphus isaea Walker (Hymenoptera: Eulophidae), parasitoids of Liriomyza huidobrensis (Blanchard) (Diptera:) Tj ETQq0 0	O1r. g BT /O	vendock 10 T
79	Effects of Endophyte Colonization of Vicia faba (Fabaceae) Plants on the Life–History of Leafminer Parasitoids Phaedrotoma scabriventris (Hymenoptera: Braconidae) and Diglyphus isaea (Hymenoptera:) Tj ETQq1	11017843	144ægBT/Ov
80	Effect of Host Plant on Feeding, Biological and Morphological Parameters of <i>Liriomyza huidobrensis </i> Blanchard (Diptera: Agromyzidae). African Entomology, 2014, 22, 577-588.	0.6	10
81	Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology, 2013, 6, 293-301.	0.7	152