
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3412390/publications.pdf Version: 2024-02-01

DED MACNUSSON

#	Article	IF	CITATIONS
1	Sclerostin: From Molecule to Clinical Biomarker. International Journal of Molecular Sciences, 2022, 23, 4751.	1.8	8
2	Impaired renal clearance among Swedish adolescents born preterm. Acta Paediatrica, International Journal of Paediatrics, 2022, 111, 1722-1728.	0.7	3
3	Alkaline Phosphatase: An Old Friend as Treatment Target for Cardiovascular and Mineral Bone Disorders in Chronic Kidney Disease. Nutrients, 2022, 14, 2124.	1.7	24
4	Impact of radiotherapy on bone health in women with rectal cancer – A prospective cohort study. European Journal of Surgical Oncology, 2022, 48, 2509-2517.	0.5	1
5	The Significance of the FTO Gene for Weight and Body Composition in Swedish Women With Severe Anorexia Nervosa During Intensive Nutrition Therapy. Journal of the American College of Nutrition, 2021, , 1-6.	1.1	0
6	The Novel Bone Alkaline Phosphatase Isoform B1x Is Associated with Improved 5-Year Survival in Chronic Kidney Disease. Nutrients, 2021, 13, 4402.	1.7	2
7	Intensive weight gain therapy in patients with anorexia nervosa results in improved serum tartrate-resistant acid phosphatase (TRAP) 5a and 5b isoform protein levels. Eating and Weight Disorders, 2020, 25, 1387-1397.	1.2	2
8	Bone alkaline phosphatase: An important biomarker in chronic kidney disease – mineral and bone disorder. Clinica Chimica Acta, 2020, 501, 198-206.	0.5	64
9	Pharmacologic epigenetic modulators of alkaline phosphatase in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2020, 29, 4-15.	1.0	17
10	Does Whole-Body Vibration Treatment Make Children's Bones Stronger?. Current Osteoporosis Reports, 2020, 18, 471-479.	1.5	9
11	Grade 1 Vertebral Fractures Identified by Densitometric Lateral Spine Imaging Predict Incident Major Osteoporotic Fracture Independently of Clinical Risk Factors and Bone Mineral Density in Older Women. Journal of Bone and Mineral Research, 2020, 35, 1942-1951.	3.1	27
12	Persistent idiopathic hyperphosphatasemia from bone alkaline phosphatase in a healthy boy. Bone, 2020, 138, 115459.	1.4	4
13	Biomarkers in WNT1 and PLS3 Osteoporosis: Altered Concentrations of DKK1 and FGF23. Journal of Bone and Mineral Research, 2020, 35, 901-912.	3.1	24
14	Altered cortical bone strength and lean mass in young women with long-duration (19Âyears) type 1 diabetes. Scientific Reports, 2020, 10, 22367.	1.6	9
15	Randomised study of children with obesity showed that whole body vibration reduced sclerostin. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 502-513.	0.7	11
16	Prospective study of growth and bone mass in Swedish children treated with the modified Atkins diet. European Journal of Paediatric Neurology, 2019, 23, 629-638.	0.7	15
17	Long-term follow-up of biomarkers of vascular calcification after switch from traditional hemodialysis to online hemodiafiltration. Scandinavian Journal of Clinical and Laboratory Investigation, 2019, 79, 174-181.	0.6	6
18	Variation of bone acquisition during growth hormone treatment in children can be explained by proteomic biomarkers, bone formation markers, body composition and nutritional factors. Bone, 2018, 116, 144-153.	1.4	3

#	Article	IF	CITATIONS
19	A 3â€year longitudinal study of skeletal effects and growth in children after kidney transplantation. Pediatric Transplantation, 2018, 22, e13253.	0.5	7
20	Vitamin D status in young Swedish women with anorexia nervosa during intensive weight gain therapy. European Journal of Nutrition, 2017, 56, 2061-2067.	1.8	11
21	Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nature Reviews Nephrology, 2017, 13, 429-442.	4.1	203
22	Bone Alkaline Phosphatase and Tartrate-Resistant Acid Phosphatase: Potential Co-regulators of Bone Mineralization. Calcified Tissue International, 2017, 101, 92-101.	1.5	93
23	Different osteocalcin forms, markers of metabolic syndrome and anthropometric measures in children within the IDEFICS cohort. Bone, 2016, 84, 230-236.	1.4	12
24	Vitamin D status in children over three decades — Do children get enough vitamin D?. Bone Reports, 2016, 5, 150-152.	0.2	11
25	Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I. Calcified Tissue International, 2016, 98, 284-293.	1.5	10
26	Increased bone alkaline phosphatase levels do not necessarily cause hypermineralization per se. Bone, 2016, 89, 83-84.	1.4	1
27	Description of an intensive nutrition therapy in hospitalized adolescents with anorexia nervosa. Eating Behaviors, 2016, 21, 172-178.	1.1	17
28	Whole-body vibration therapy in children with severe motor disabilities. Journal of Rehabilitation Medicine, 2015, 47, 223-228.	0.8	16
29	We are what we eat – is it time to reconsider calciumâ€deficiency rickets in <scp>N</scp> igeria? (<scp>FA</scp>). Tropical Medicine and International Health, 2015, 20, 408-410.	1.0	1
30	Bone Alkaline Phosphatase Isoforms in Hemodialysis Patients With Low Versus Non-Low Bone Turnover: AÂDiagnostic TestÂStudy. American Journal of Kidney Diseases, 2015, 66, 99-105.	2.1	29
31	Shortâ€ŧerm changes in bone formation markers following growth hormone (<scp>GH</scp>) treatment in short prepubertal children with a broad range of <scp>GH</scp> secretion. Clinical Endocrinology, 2015, 82, 91-99.	1.2	11
32	Seasonal variations in vitamin D in relation to growth in short prepubertal children before and during first year growth hormone treatment. Journal of Endocrinological Investigation, 2015, 38, 1309-1317.	1.8	6
33	In the backwater of convective dialysis: decreased 25-hydroxyvitamin D levels following the switch to online hemodiafiltration. Clinical Nephrology, 2015, 83 (2015), 315-321.	0.4	8
34	Bone and fat mass in relation to postnatal levels of insulin-like growth factors in prematurely born children at 4 y of age. Pediatric Research, 2014, 75, 544-550.	1.1	12
35	Skeletal effects and growth in children with chronic kidney disease: a 5-year prospective study. Journal of Bone and Mineral Metabolism, 2013, 31, 322-328.	1.3	3
36	Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone, 2013, 53, 399-408.	1.4	51

#	Article	IF	CITATIONS
37	Bone Alkaline Phosphatase in CKD–Mineral Bone Disorder. American Journal of Kidney Diseases, 2013, 62, 810-822.	2.1	111
38	Determinants of Fibroblast Growth Factor-23 and Parathyroid Hormone Variability in Dialysis Patients. American Journal of Nephrology, 2013, 37, 462-471.	1.4	9
39	Calcifying Human Aortic Smooth Muscle Cells Express Different Bone Alkaline Phosphatase Isoforms, Including the Novel B1x Isoform. Journal of Vascular Research, 2013, 50, 167-174.	0.6	21
40	Exon Resequencing of the Gene Encoding UCMA/GRP Reveals a Common Carboxy-Terminal 138Thr > Ser Polymorphism. Clinical Laboratory, 2013, 59, 1397-401.	0.2	0
41	Is a daily supplementation with 40 microgram vitamin D3 sufficient? A randomised controlled trial. European Journal of Nutrition, 2012, 51, 939-945.	1.8	20
42	Bone mass development in patients with Duchenne and Becker muscular dystrophies: a 4â€year clinical followâ€up. Acta Paediatrica, International Journal of Paediatrics, 2012, 101, 424-432.	0.7	18
43	Vitamin D status: sunshine is nice but other factors prevail. European Journal of Nutrition, 2012, 51, 255-256.	1.8	3
44	Targeting RANKL for reduction of bone loss around unstable implants: OPG-Fc compared to alendronate in a model for mechanically induced loosening. Bone, 2011, 48, 225-230.	1.4	33
45	Relation between bone mineral density, biological markers and anthropometric measures in 4-year-old children: a pilot study within the IDEFICS study. International Journal of Obesity, 2011, 35, S119-S124.	1.6	9
46	Acidic preparations of lysed platelets upregulate proliferative pathways in osteoblast-like cells as demonstrated by genome-wide microarray analysis. Platelets, 2011, 22, 452-460.	1.1	2
47	Biochemical bone markers in the assessment and pamidronate treatment of children and adolescents with osteogenesis imperfecta. Acta Paediatrica, International Journal of Paediatrics, 2010, 99, 1834-1840.	0.7	24
48	A prospective study of fibroblast growth factor-23 in children with chronic kidney disease. Scandinavian Journal of Clinical and Laboratory Investigation, 2010, 70, 15-20.	0.6	8
49	Circulating and tissue-derived isoforms of bone alkaline phosphatase in Paget's disease of bone. Scandinavian Journal of Clinical and Laboratory Investigation, 2010, 70, 128-135.	0.6	16
50	Children with chronic kidney disease: a 3â€year prospective study of growth, bone mass and bone turnover. Acta Paediatrica, International Journal of Paediatrics, 2009, 98, 367-373.	0.7	13
51	Clinical significance of bone alkaline phosphatase isoforms, including the novel B1x isoform, in mild to moderate chronic kidney disease. Nephrology Dialysis Transplantation, 2009, 24, 3382-3389.	0.4	28
52	Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone, 2009, 45, 987-993.	1.4	45
53	Isoforms of Bone Alkaline Phosphatase, Stem Cells, and Osteoblast Phenotypes. Stem Cells and Development, 2008, 17, 857-858.	1.1	6
54	The content of bone morphogenetic proteins in platelets varies greatly between different platelet donors. Biochemical and Biophysical Research Communications, 2008, 375, 261-264.	1.0	37

#	Article	IF	CITATIONS
55	Acidic preparations of platelet concentrates release bone morphogenetic proteinâ€2. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 79, 433-437.	1.2	18
56	Variation of pH in lysed platelet concentrates influence proliferation and alkaline phosphatase activity in human osteoblast-like cells. Platelets, 2007, 18, 113-118.	1.1	29
57	Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy. Neuromuscular Disorders, 2007, 17, 919-928.	0.3	100
58	Analysis of human bone alkaline phosphatase isoforms: Comparison of isoelectric focusing and ion-exchange high-performance liquid chromatography. Clinica Chimica Acta, 2007, 379, 105-112.	0.5	18
59	Bone mass, biochemical markers and growth in children with chronic kidney disease: a 1â€year prospective study. Acta Paediatrica, International Journal of Paediatrics, 2007, 96, 720-725.	0.7	15
60	The novel bone alkaline phosphatase B1x isoform in children with kidney disease. Pediatric Nephrology, 2006, 21, 1723-1729.	0.9	30
61	Functional characterization of cell hybrids generated by induced fusion of primary porcine mesenchymal stem cells with an immortal murine cell line. Cell and Tissue Research, 2006, 326, 123-137.	1.5	12
62	Comparison of 3 Third-Generation Assays for Bio-intact Parathyroid Hormone. Clinical Chemistry, 2006, 52, 903-904.	1.5	8
63	Polyethylene Glycol-Mediated Fusion between Primary Mouse Mesenchymal Stem Cells and Mouse Fibroblasts Generates Hybrid Cells with Increased Proliferation and Altered Differentiation. Stem Cells and Development, 2006, 15, 905-919.	1.1	23
64	Effects of Tunicamycin, Mannosamine, and Other Inhibitors of Glycoprotein Processing on Skeletal Alkaline Phosphatase in Human Osteoblast-Like Cells. Calcified Tissue International, 2005, 76, 63-74.	1.5	12
65	Conserved Epitopes in Human and Mouse Tissue-Nonspecific Alkaline Phosphatase. Tumor Biology, 2005, 26, 113-120.	0.8	11
66	Common biochemical markers of bone turnover predict future bone loss: A 5-year follow-up study. Clinica Chimica Acta, 2005, 356, 67-75.	0.5	71
67	Increased matrix concentrations of IGFBP-5 in cancellous bone in osteoarthritis. Annals of the Rheumatic Diseases, 2004, 63, 1162-1165.	0.5	10
68	Rapid Genotyping of the Osteoporosis-Associated Polymorphic Transcription Factor Sp1 Binding Site in the COL1A1 Gene by Pyrosequencing. Molecular Biotechnology, 2004, 26, 87-90.	1.3	1
69	Calcium Status and Supplementation. Metal lons in Biological Systems, 2004, , .	0.4	0
70	Monoclonal Antibodies against Tissue-Nonspecific Alkaline Phosphatase. Tumor Biology, 2002, 23, 228-248.	0.8	32
71	Different distributions of human bone alkaline phosphatase isoforms in serum and bone tissue extracts. Clinica Chimica Acta, 2002, 325, 59-70.	0.5	45
72	Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney International, 2001, 60, 257-265.	2.6	93

#	Article	IF	CITATIONS
73	Serum Isoforms of Bone Alkaline Phosphatase Increase During Physical Exercise in Women. Calcified Tissue International, 2000, 66, 342-347.	1.5	43
74	Isoforms of Bone Alkaline Phosphatase: Characterization and Origin in Human Trabecular and Cortical Bone. Journal of Bone and Mineral Research, 1999, 14, 1926-1933.	3.1	102
75	Different Isoforms of Bone Alkaline Phosphatase Exist. Journal of Bone and Mineral Research, 1998, 13, 760-761.	3.1	3
76	Serum Levels of Insulin-like Growth Factor Binding Proteins (IGFBP)-4 and -5 Correlate with Bone Mineral Density in Growth Hormone (GH)-Deficient Adults and Increase with GH Replacement Therapy. Journal of Bone and Mineral Research, 1998, 13, 891-899.	3.1	49
77	Differences of bone alkaline phosphatase isoforms in metastatic bone disease and discrepant effects of clodronate on different skeletal sites indicated by the location of pain. Clinical Chemistry, 1998, 44, 1621-1628.	1.5	44
78	Different Responses of Bone Alkaline Phosphatase Isoforms During Recombinant Insulin-like Growth Factor-I (IGF-I) and During Growth Hormone Therapy in Adults with Growth Hormone Deficiency. Journal of Bone and Mineral Research, 1997, 12, 210-220.	3.1	61
79	Determination of bone alkaline phosphatase isoforms in serum by a new high-performance liquid chromatography assay in patients with metabolic bone disease. Acta Orthopaedica, 1995, 66, 203-204.	1.4	14
80	Serum Osteocalcin and Bone and Liver Alkaline Phosphatase Isoforms in Healthy Children and Adolescents. Pediatric Research, 1995, 38, 955-961.	1.1	70
81	Methodological Aspects on Separation and Reaction Conditions of Bone and Liver Alkaline Phosphatase Isoform Analysis by High-Performance Liquid Chromatography. Analytical Biochemistry, 1993, 211, 156-163.	1.1	44
82	Determination of alkaline phosphatase isoenzymes in serum by high-performance liquid chromatography with post-column reaction detection. Biomedical Applications, 1992, 576, 79-86.	1.7	56