
Anunciacion Lafuente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3412357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perfluorooctane sulfonate (PFOS) can alter the hypothalamic–pituitary–adrenal (HPA) axis activity by modifying CRF1 and glucocorticoid receptors. Toxicology Letters, 2018, 295, 1-9.	0.8	20
2	The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats. Chemosphere, 2016, 155, 488-497.	8.2	25
3	Perfluorooctane sulfonate (PFOS) exposure could modify the dopaminergic system in several limbic brain regions. Toxicology Letters, 2016, 240, 226-235.	0.8	42
4	Possible role of serotonin and neuropeptide Y on the disruption of the reproductive axis activity by perfluorooctane sulfonate. Toxicology Letters, 2015, 233, 138-147.	0.8	25
5	Initial study on the possible mechanisms involved in the effects of high doses of perfluorooctane sulfonate (PFOS) on prolactin secretion. Food and Chemical Toxicology, 2015, 83, 10-16.	3.6	15
6	Toxic effects of methoxychlor on the episodic prolactin secretory pattern: Possible mediated effects of nitric oxide production. Journal of Circadian Rhythms, 2014, 4, 3.	1.3	5
7	Regulation of corticosterone secretion is modified by PFOS exposure at different levels of the hypothalamic–pituitary–adrenal axis in adult male rats. Toxicology Letters, 2014, 230, 252-262.	0.8	36
8	Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. Environmental Research, 2014, 134, 158-168.	7.5	63
9	Neurotoxic effects induced by endosulfan exposure during pregnancy and lactation in female and male rat striatum. Toxicology, 2013, 311, 35-40.	4.2	36
10	The hypothalamic–pituitary–gonadal axis is target of cadmium toxicity. An update of recent studies and potential therapeutic approaches. Food and Chemical Toxicology, 2013, 59, 395-404.	3.6	94
11	Modulatory Effects of Melatonin on Cadmium-Induced Changes in Biogenic Amines in Rat Hypothalamus. Neurotoxicity Research, 2011, 20, 240-249.	2.7	18
12	Daily pattern of pituitary glutamine, glutamate, and aspartate content disrupted by cadmium exposure. Amino Acids, 2010, 38, 1165-1172.	2.7	10
13	Cadmium chronotoxicity at pituitary level: effects on plasma ACTH, GH, and TSH daily pattern. Journal of Physiology and Biochemistry, 2010, 66, 213-220.	3.0	27
14	Cadmium chloride exposure modifies amino acid daily pattern in the mediobasal hypothalamus in adult male rat. Journal of Applied Toxicology, 2010, 30, 84-90.	2.8	14
15	Cadmium effects on 24h changes in glutamate, aspartate, glutamine, GABA and taurine content of rat striatum. Journal of Trace Elements in Medicine and Biology, 2010, 24, 212-218.	3.0	15
16	Endosulfan effects on pituitary hormone and both nitrosative and oxidative stress in pubertal male rats. Toxicology Letters, 2010, 197, 106-112.	0.8	33
17	Cadmium exposure disrupts GABA and taurine regulation of prolactin secretion in adult male rats. Toxicology Letters, 2009, 185, 175-179.	0.8	11
18	Effects of in utero and lactational exposure to endosulfan in prefrontal cortex of male rats. Toxicology Letters, 2008, 176, 58-67.	0.8	29

ANUNCIACION LAFUENTE

#	Article	IF	CITATIONS
19	Toxic effects of methoxychlor administered subcutaneously on the hypothalamic-pituitary-testicular axis in adult rats. Food and Chemical Toxicology, 2008, 46, 1570-1575.	3.6	18
20	Relationship between blood concentrations of heavy metals and cytogenetic and endocrine parameters among subjects involved in cleaning coastal areas affected by the †Prestige' tanker oil spill. Chemosphere, 2008, 71, 447-455.	8.2	40
21	Biomonitoring of Human Exposure to Prestige Oil: Effects on DNA and Endocrine Parameters. Environmental Health Insights, 2008, 2, EHI.S954.	1.7	22
22	Initial study on the effects of Prestige oil on human health. Environment International, 2007, 33, 176-185.	10.0	64
23	Toxic effects of methoxychlor in rat striatum: modifications in several neurotransmitters. Journal of Physiology and Biochemistry, 2007, 63, 171-177.	3.0	8
24	In vivo protective effect of melatonin on cadmium-induced changes in redox balance and gene expression in rat hypothalamus and anterior pituitary. Journal of Pineal Research, 2006, 41, 238-246.	7.4	43
25	Toxic effects of cadmium on GABA and taurine content in different brain areas of adult male rats. Journal of Physiology and Biochemistry, 2005, 61, 439-446.	3.0	13
26	Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicology Letters, 2005, 155, 87-96.	0.8	40
27	Differential effects of cadmium on blood lymphocyte subsets. BioMetals, 2004, 17, 451-456.	4.1	61
28	Cadmium exposure differentially modifies the circadian patterns of norepinephrine at the median eminence and plasma LH, FSH and testosterone levels. Toxicology Letters, 2004, 146, 175-182.	0.8	68
29	Effect of nitric oxide on prolactin secretion and hypothalamic biogenic amine contents. Life Sciences, 2004, 74, 1681-1690.	4.3	13
30	Are cadmium effects on plasma gonadotropins, prolactin, ACTH, GH and TSH levels, dose-dependent?. BioMetals, 2003, 16, 243-250.	4.1	96
31	Effect of cadmium on lymphocyte subsets distribution in thymus and spleen. Journal of Physiology and Biochemistry, 2003, 59, 43-48.	3.0	29
32	Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats. Experimental Brain Research, 2003, 149, 200-206.	1.5	47
33	Cadmium exposure differentially modifies the circadian patterns of norepinephrine at the median eminence and plasma LH, FSH and testosterone levels. Toxicology Letters, 2003, 146, 175-175.	0.8	0
34	Methoxychlor modifies the ultradian secretory pattern of prolactin and affects its TRH response. Medical Science Monitor, 2003, 9, PI37-42.	1.1	4
35	Effects of Oral Cadmium Exposure through Puberty on Plasma Prolactin and Gonadotropin Levels and Amino Acid Contents in Various Brain Areas in Pubertal Male Rats. NeuroToxicology, 2002, 23, 207-213.	3.0	10
36	Oral cadmium exposure throughout puberty does not inhibit secretion of prolactin, GH and ACTH through dopamine metabolism changes in male rat. Journal of Trace Elements in Medicine and Biology, 2002, 16, 249-254.	3.0	7

#	Article	IF	CITATIONS
37	Possible role of glutamate, aspartate, glutamine, GABA or taurine on cadmium toxicity on the hypothalamic pituitary axis activity in adult male rats. BioMetals, 2002, 15, 183-187.	4.1	7
38	Alternate cadmium exposure differentially affects amino acid metabolism within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats. Neurochemistry International, 2001, 39, 187-192.	3.8	28
39	Cadmium Effects on Hypothalamic-Pituitary-Testicular Axis in Male Rats. Experimental Biology and Medicine, 2001, 226, 605-611.	2.4	81
40	Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats. Archives of Toxicology, 2001, 75, 127-133.	4.2	13
41	Cadmium effects on dopamine turnover and plasma levels of prolactin, GH and ACTH. Journal of Physiology and Biochemistry, 2001, 57, 231-236.	3.0	20
42	Effects of subchronic alternating cadmium exposure on dopamine turnover and plasma levels of prolactin, GH and ACTH. BioMetals, 2000, 13, 47-55.	4.1	23
43	Possible estrogenic and/or antiandrogenic effects of methoxychlor on prolactin release in male rats. Archives of Toxicology, 2000, 74, 270-275.	4.2	24
44	Pubertal and postpubertal cadmium exposure differentially affects the hypothalamic–pituitary–testicular axis function in the rat. Food and Chemical Toxicology, 2000, 38, 913-923.	3.6	77
45	Pubertal dependent effects of cadmium on episodic prolactin secretion in male rats. Archives of Toxicology, 1999, 73, 60-63.	4.2	11
46	Effects of Chronic Alternating Cadmium Exposure on the Episodic Secretion of Prolactin in Male Rats. Journal of Trace Elements in Medicine and Biology, 1999, 12, 205-210.	3.0	12
47	Cadmium affects the episodic luteinizing hormone secretion in male rats: possible age-dependent effects. Toxicology Letters, 1999, 104, 27-33.	0.8	29
48	Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male. Toxicology Letters, 1999, 110, 209-218.	0.8	75
49	Cadmium does not inhibit pulsatile prolactin secretion through TRH. , 1998, 11, 235-241.		10
50	Modulation of episodic adrenocorticotropin hormone secretion by cadmium in male rats. , 1998, 11, 183-188.		13
51	Effects of acute and subchronic cadmium administration on pituitary hormone secretion in rat. Revista Española De FisiologÃa, 1997, 53, 265-9.	0.0	9
52	Effects of zinc and cadmium administration on pituitary hormone secretion in adult male rats. Toxicology Letters, 1996, 88, 62.	0.8	4
53	Effects of cyclosporin treatment on prolactin pulsatility in chronic hyperprolactinemic male rats. Journal of Neuroimmunology, 1996, 65, 41-47.	2.3	8
54	Possible Changes in the Regulatory Mechanisms of Pulsatile Luteinizing Hormone Secretion in Adult Pituitary-Grafted Female Rats. Experimental Biology and Medicine, 1995, 209, 163-169.	2.4	6

#	Article	IF	CITATIONS
55	Cyclosporine Modifies the Pulsatile Secretory Patterns of Prolactin and Luteinizing Hormone in Normal and Pituitary-Grafted Female Rats. Neuroendocrinology, 1994, 60, 581-588.	2.5	9
56	Physiological roles of thyrotrophin-releasing hormone and vasoactive intestinal peptide on the pulsatile secretory patterns of prolactin in pituitary-grafted female rats. Journal of Endocrinology, 1994, 142, 581-586.	2.6	14
57	Pulsatile prolactin secretory patterns throughout the oestrous cycle in the rat. Journal of Endocrinology, 1993, 137, 43-47.	2.6	14