
Shun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3412097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An yttrium-organic framework based on a hexagonal prism second building unit for luminescent sensing of antibiotics and highly effective CO ₂ fixation. Inorganic Chemistry Frontiers, 2022, 9, 391-400.	6.0	16
2	Post-crosslinking of conjugated microporous polymers using vinyl polyhedral oligomeric silsesquioxane for enhancing surface areas and organic micropollutants removal performance from water. Journal of Colloid and Interface Science, 2022, 615, 697-706.	9.4	8
3	Increasing the surface area and CO ₂ uptake of conjugated microporous polymers <i>via</i> a post-knitting method. Materials Chemistry Frontiers, 2021, 5, 5319-5327.	5.9	17
4	Fabrication of Bioresource-Derived Porous Carbon-Supported Iron as an Efficient Oxidase Mimic for Dual-Channel Biosensing. Analytical Chemistry, 2021, 93, 3130-3137.	6.5	54
5	Bioinspired, Nanostructure-Amplified, Subcutaneous Light Harvesting to Power Implantable Biomedical Electronics. ACS Nano, 2021, 15, 12475-12482.	14.6	11
6	Constructing self-assembled nanohybrids for the ratiometric fluorescent sensing of acetylcholinesterase activity. Sensors and Actuators B: Chemical, 2021, 345, 130430.	7.8	9
7	β-Cyclodextrin modified silver nanoclusters for highly sensitive fluorescence sensing and bioimaging of intracellular alkaline phosphatase. Talanta, 2020, 207, 120315.	5.5	19
8	Multifunctional conjugated microporous polymers with pyridine unit for efficient iodine sequestration, exceptional tetracycline sensing and removal. Journal of Hazardous Materials, 2020, 387, 121949.	12.4	66
9	Two zinc metal–organic framework isomers based on pyrazine tetracarboxylic acid and dipyridinylbenzene for adsorption and separation of CO ₂ and light hydrocarbons. Dalton Transactions, 2020, 49, 1135-1142.	3.3	25
10	Silsesquioxane–Carbazole-Corbelled Hybrid Porous Polymers with Flexible Nanopores for Efficient CO ₂ Conversion and Luminescence Sensing. ACS Applied Polymer Materials, 2020, 2, 189-197.	4.4	28
11	Ag-Ion-Modified Au Nanoclusters for Fluorometric Analysis of Alkaline Phosphatase. ACS Applied Nano Materials, 2020, 3, 6034-6042.	5.0	28
12	Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 12995-13002.	13.7	99
13	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Defined Nanopores. Angewandte Chemie, 2020, 132, 19655-19661.	2.0	1
14	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Đefined Nanopores. Angewandte Chemie - International Edition, 2020, 59, 19487-19493.	13.8	38
15	Ultrahigh volatile iodine capture by conjugated microporous polymer based on <i>N</i> , <i>N</i> , <i>N</i> ′, <i>N</i> ′-tetraphenyl-1,4-phenylenediamine. Polymer Chemistry, 2019, 10, 2608-2615.	3.9	45
16	Conjugated microporous polymers based on biphenylene for CO ₂ adsorption and luminescence detection of nitroaromatic compounds. New Journal of Chemistry, 2018, 42, 9482-9487.	2.8	44
17	Postâ€cationic Modification of a Pyrimidineâ€Based Conjugated Microporous Polymer for Enhancing the Removal Performance of Anionic Dyes in Water. Chemistry - A European Journal, 2018, 24, 7480-7488.	3.3	71
18	Design and synthesis of a multifunctional porous N-rich polymer containing <i>s</i> -triazine and Tr¶ger's base for CO ₂ adsorption, catalysis and sensing. Polymer Chemistry, 2018, 9, 2643-2649.	3.9	57

SHUN WANG

#	Article	IF	CITATIONS
19	Copper nanoclusters/polydopamine nanospheres based fluorescence aptasensor for protein kinase activity determination. Analytica Chimica Acta, 2018, 1035, 184-191.	5.4	24
20	Enhancing Gas Sorption and Separation Performance via Bisbenzimidazole Functionalization of Highly Porous Covalent Triazine Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 26678-26686.	8.0	52
21	Synthesis, structure and gas adsorption properties of a stable microporous Cu-based metal–organic framework assembled from a T-shaped pyridyl dicarboxylate ligand. RSC Advances, 2017, 7, 17697-17703.	3.6	5
22	Multifunctional porous Tröger's base polymers with tetraphenylethene units: CO ₂ adsorption, luminescence and sensing properties. Polymer Chemistry, 2017, 8, 4842-4848.	3.9	35