
Yinbo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3411932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Scientific Reports, 2018, 8, 3089.	1.6	99
2	Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 1-7.	2.6	58
3	Molecular dynamics simulation of TiN (001) thin films under indentation. Ceramics International, 2015, 41, 14078-14086.	2.3	47
4	MD simulation of nanoindentation on (001) and (111) surfaces of Ag–Ni multilayers. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 481-488.	1.3	43
5	Molecular dynamics simulation of deformation twin in rocksalt vanadium nitride. Journal of Alloys and Compounds, 2016, 675, 128-133.	2.8	43
6	Molecular dynamics simulation of AlN thin films under nanoindentation. Ceramics International, 2017, 43, 4068-4075.	2.3	43
7	Molecular dynamics simulations for responses of nanotwinned diamond films under nanoindentation. Ceramics International, 2017, 43, 16888-16894.	2.3	41
8	Molecular dynamics simulation of nano-indentation of (111) cubic boron nitride with optimized Tersoff potential. Applied Surface Science, 2016, 382, 309-315.	3.1	35
9	Strain rate dependence of tension and compression behavior in nano-polycrystalline vanadium nitride. Ceramics International, 2017, 43, 11635-11641.	2.3	34
10	Strengthening mechanisms of graphene coated copper under nanoindentation. Computational Materials Science, 2018, 144, 42-49.	1.4	34
11	Molecular dynamics simulation of the slip systems in VN. RSC Advances, 2015, 5, 77831-77838.	1.7	30
12	Nanoindentation of ultra-hard cBN films: A molecular dynamics study. Applied Surface Science, 2017, 392, 215-224.	3.1	30
13	Investigation of mechanical behaviour of amorphous aluminium nitride. Materialia, 2018, 2, 148-156.	1.3	27
14	Unveiling the Working Mechanism of Graphene Bubble Film/Silicon Composite Anodes in Li-Ion Batteries: From Experiment to Modeling. ACS Applied Energy Materials, 2020, 3, 521-531.	2.5	24
15	First-principles calculation and molecular dynamics simulation of fracture behavior of VN layers under uniaxial tension. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 224-231.	1.3	23
16	MD simulation of effect of crystal orientations and substrate temperature on growth of Cu/Ni bilayer films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	22
17	MD simulation of growth of Pd on Cu (1 1 1) and Cu on Pd (1 1 1) substrates. Applied Surface Science, 2015, 356, 651-658.	3.1	21
18	Grain size dependence of tensile properties in nanocrystalline diamond. Computational Materials Science, 2019, 157, 67-74.	1.4	20

Υίνβο Ζηλο

#	Article	IF	CITATIONS
19	Effects of twin boundaries in vanadium nitride films subjected to tensile/compressive deformations. Applied Surface Science, 2017, 426, 262-270.	3.1	19
20	Graphene coating makes copper more resistant to plastic deformation. Composites Communications, 2019, 12, 106-111.	3.3	18
21	Uncovering the Mechanism of Size Effect on the Thermomechanical Properties of Highly Cross-Linked Epoxy Resins. Journal of Physical Chemistry B, 2022, 126, 2593-2607.	1.2	18
22	Atomic structures and electronic properties of interfaces between aluminum and carbides/nitrides: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 89, 15-20.	1.3	17
23	Molecular dynamics simulation of nano-indentation on Ti-V multilayered thin films. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 213-219.	1.3	17
24	Molecular Dynamics Studies on Size Effects in Laminated Polycrystalline Graphene/Copper Composites: Implications for Mechanical Behavior. ACS Applied Nano Materials, 2021, 4, 12289-12299.	2.4	14
25	Flow strength limit of nanocrystalline tantalum predicted with molecular dynamics simulations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 1-9.	2.6	13
26	Twin boundary migration and reactions with stacking fault tetrahedron in Cu and CoCrCuFeNi high-entropy alloy. Journal of Materials Research and Technology, 2022, 17, 282-292.	2.6	13
27	Effects of modulation periods on mechanical properties of V/VN nano-multilayers. Ceramics International, 2019, 45, 10295-10303.	2.3	12
28	Formation and Anisotropic Mechanical Behavior of Stacking Fault Tetrahedron in Ni and CoCrFeNiMn High-Entropy Alloy. Frontiers in Materials, 2022, 8, .	1.2	12
29	Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure. Journal of Materials Science and Technology, 2020, 48, 114-122.	5.6	8
30	Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation. Nanomaterials, 2017, 7, 375.	1.9	6
31	Notch effects on deformation of crystalline and amorphous AlN – A nanoscale study. Ceramics International, 2019, 45, 907-917.	2.3	6
32	Delay of inverse Hall-Petch relationship of nanocrystalline Cu by modifying grain boundaries with coherent twins. Physical Review B, 2022, 105, .	1.1	6
33	Toughening and maintaining strength of diamond with substitutional doping boron and nitrogen. Journal of Alloys and Compounds, 2019, 805, 1090-1095.	2.8	5
34	Dual phase nano-particulate AlN composite — A kind of ceramics with high strength and ductility. Ceramics International, 2019, 45, 19845-19855.	2.3	5
35	Super Ductility of Nanoglass Aluminium Nitride. Nanomaterials, 2019, 9, 1535.	1.9	5
36	Investigation of impurity induced twinning in MgO from first principles calculations. Computational Materials Science, 2018, 150, 390-396.	1.4	3

Υίνβο Ζήαο

#	Article	IF	CITATIONS
37	Comment on "Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb― Physical Review Letters, 2019, 123, 119601.	2.9	1
38	Numerical investigation of microstructure and failure of lithiated silicon under biaxial tension. Computational Materials Science, 2021, 200, 110764.	1.4	0
39	Deformation characteristics of nanolayered dual-phase CrCoNi medium-entropy alloy nanowires. Materials Today Communications, 2022, 31, 103273.	0.9	Ο