
Ivan Bedzhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3411852/publications.pdf Version: 2024-02-01

IVAN REDZHOV

#	Article	IF	CITATIONS
1	Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation. Cell, 2014, 156, 1032-1044.	13.5	362
2	In vitro culture of mouse blastocysts beyond the implantation stages. Nature Protocols, 2014, 9, 2732-2739.	5.5	151
3	Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130538.	1.8	98
4	lgf1r Signaling Is Indispensable for Preimplantation Development and Is Activated via a Novel Function of E-cadherin. PLoS Genetics, 2012, 8, e1002609.	1.5	48
5	Wnt/Beta-catenin/Esrrb signalling controls the tissue-scale reorganization and maintenance of the pluripotent lineage during murine embryonic diapause. Nature Communications, 2020, 11, 5499.	5.8	35
6	Development of the anterior-posterior axis is a self-organizing process in the absence of maternal cues in the mouse embryo. Cell Research, 2015, 25, 1368-1371.	5.7	31
7	3D biomimetic platform reveals the first interactions of the embryo and the maternal blood vessels. Developmental Cell, 2021, 56, 3276-3287.e8.	3.1	27
8	Deciphering epiblast lumenogenesis reveals proamniotic cavity control of embryo growth and patterning. Science Advances, 2021, 7, .	4.7	26
9	Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency. Stem Cell Research, 2013, 11, 1250-1263.	0.3	25
10	A <i>Cdh1^{HA}</i> knockâ€in allele rescues the <i>Cdh1^{â^'/â^'}</i> phenotype but shows essential Cdh1 function during placentation. Developmental Dynamics, 2010, 239, 2330-2344.	0.8	23
11	Cell death and morphogenesis during early mouse development: Are they interconnected?. BioEssays, 2015, 37, 372-378.	1.2	17
12	A balanced Oct4 interactome is crucial for maintaining pluripotency. Science Advances, 2022, 8, eabe4375.	4.7	17
13	Test-tube embryos - mouse and human development in vitro to blastocyst stage and beyond. International Journal of Developmental Biology, 2019, 63, 203-215.	0.3	15
14	Applying the Proximity Ligation Assay (PLA) to Mouse Preimplantation Embryos for Identifying Protein-Protein Interactions In Situ. Methods in Molecular Biology, 2015, 1233, 57-64.	0.4	9
15	Lima1 mediates the pluripotency control of membrane dynamics and cellular metabolism. Nature Communications, 2022, 13, 610.	5.8	8
16	Mechanisms of formation and functions of the early embryonic cavities. Seminars in Cell and Developmental Biology, 2022, 131, 110-116.	2.3	7
17	Isolation and Culture of Periimplantation and Early Postimplantation Mouse Embryos. Methods in Molecular Biology, 2019, 2006, 373-382.	0.4	6
18	Placental gene editing via trophectoderm-specific Tat-Cre/loxP recombination. Development (Cambridge), 2020, 147, .	1.2	6

#	Article	IF	CITATIONS
19	Ronin governs the metabolic capacity of the embryonic lineage for postâ€implantation development. EMBO Reports, 2021, 22, e53048.	2.0	4
20	In Vitro Culture of Mouse Blastocysts to the Egg Cylinder Stage via Mural Trophectoderm Excision. Methods in Molecular Biology, 2021, 2214, 31-40.	0.4	1