
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/341168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Ca, Cr, Ga and Gd promotor over lanthanaâ€zirconia–supported Ni catalyst towards H ₂ â€rich syngas production through dry reforming of methane. Energy Science and Engineering, 2022, 10, 866-880.	1.9	21
2	Dry Reforming of Methane with Ni Supported on Mechanically Mixed Yttria-Zirconia Support. Catalysis Letters, 2022, 152, 3632-3641.	1.4	6
3	Hydrogen production from CO ₂ reforming of methane using zirconia supported nickel catalyst. RSC Advances, 2022, 12, 10846-10854.	1.7	11
4	Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 164-174.	1.8	33
5	The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane. Catalysts, 2022, 12, 361.	1.6	15
6	Barium-Promoted Yttria–Zirconia-Supported Ni Catalyst for Hydrogen Production via the Dry Reforming of Methane: Role of Barium in the Phase Stabilization of Cubic ZrO ₂ . ACS Omega, 2022, 7, 16468-16483.	1.6	25
7	Modification of CeNi0.9Zr0.1O3 Perovskite Catalyst by Partially Substituting Yttrium with Zirconia in Dry Reforming of Methane. Materials, 2022, 15, 3564.	1.3	10
8	Promotional effect of addition of ceria over yttria-zirconia supported Ni based catalyst system for hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2022, 47, 20838-20850.	3.8	38
9	Performance Study of Methane Dry Reforming on Ni/ZrO2 Catalyst. Energies, 2022, 15, 3841.	1.6	11
10	Lanthanum–Cerium-Modified Nickel Catalysts for Dry Reforming of Methane. Catalysts, 2022, 12, 715.	1.6	9
11	In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Applied Catalysis B: Environmental, 2021, 280, 119445.	10.8	104
12	Ni supported on La2O3+ZrO2 for dry reforming of methane: The impact of surface adsorbed oxygen species. International Journal of Hydrogen Energy, 2021, 46, 3780-3788.	3.8	30
13	Role of Mixed Oxides in Hydrogen Production through the Dry Reforming of Methane over Nickel Catalysts Supported on Modified γ-Al2O3. Processes, 2021, 9, 157.	1.3	22
14	Yttria Modified ZrO ₂ Supported Ni Catalysts for CO ₂ Reforming of Methane: The Role of Ce Promoter. ACS Omega, 2021, 6, 1280-1288.	1.6	29
15	Ce promoted lanthana-zirconia supported Ni catalyst system: A ternary redox system for hydrogen production. Molecular Catalysis, 2021, 504, 111498.	1.0	22
16	Hydrogen Yield from CO2 Reforming of Methane: Impact of La2O3 Doping on Supported Ni Catalysts. Energies, 2021, 14, 2412.	1.6	10
17	Optimizing acido-basic profile of support in Ni supported La2O3+Al2O3 catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 14225-14235.	3.8	39
18	CO2 reforming of CH4 over Ni-catalyst supported on yttria stabilized zirconia. Journal of Saudi Chemical Society. 2021, 25, 101244.	2.4	6

#	Article	IF	CITATIONS
19	Optimizing yttria-zirconia proportions in Ni supported catalyst system for H2 production through dry reforming of methane. Molecular Catalysis, 2021, 510, 111676.	1.0	20
20	Ceria promoted phosphateâ€∉irconia supported Ni catalyst for hydrogen rich syngas production through dry reforming of methane. International Journal of Energy Research, 2021, 45, 19289-19302.	2.2	20
21	Dry Reforming of Methane Using Ni Catalyst Supported on ZrO2: The Effect of Different Sources of Zirconia. Catalysts, 2021, 11, 827.	1.6	11
22	Impact of ceria over WO3–ZrO2 supported Ni catalyst towards hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 25015-25028.	3.8	44
23	Characterization and kinetic modeling for pyrolytic conversion of cotton stalks. Energy Science and Engineering, 2021, 9, 1908-1918.	1.9	13
24	Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts, 2021, 11, 1233.	1.6	8
25	The effect of modifier identity on the performance of Ni-based catalyst supported on Î ³ -Al2O3 in dry reforming of methane. Catalysis Today, 2020, 348, 236-242.	2.2	46
26	H2 Production from Catalytic Methane Decomposition Using Fe/x-ZrO2 and Fe-Ni/(x-ZrO2) (x = 0, La2O3,) Tj E	[QqQ_0 0 rg	BT /Overlock
27	Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane. Processes, 2020, 8, 1502.	1.3	20
28	Impact of Ce-Loading on Ni-catalyst supported over La2O3+ZrO2 in methane reforming with CO2. International Journal of Hydrogen Energy, 2020, 45, 33343-33351.	3.8	25
29	Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Scientific Reports, 2020, 10, 13861.	1.6	42
30	Study of Partial Oxidation of Methane by Ni/Al2O3 Catalyst: Effect of Support Oxides of Mg, Mo, Ti and Y as Promoters. Molecules, 2020, 25, 5029.	1.7	5
31	Methane Decomposition Over ZrO2-Supported Fe and Fe–Ni Catalysts—Effects of Doping La2O3 and WO3. Frontiers in Chemistry, 2020, 8, 317.	1.8	13
32	Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts. Catalysts, 2020, 10, 242.	1.6	21
33	Synthesis of silver nanoparticles decorated on reduced graphene oxide nanosheets and their electrochemical sensing towards hazardous 4-nitrophenol. Journal of Materials Science: Materials in Electronics, 2020, 31, 11927-11937.	1.1	33
34	Methane decomposition over strontium promoted iron catalyst: effect of different ratio of Al/Si support on hydrogen yield. Chemical Engineering Communications, 2020, 207, 1148-1156.	1.5	4
35	Hydrogen Production by Partial Oxidation Reforming of Methane over Ni Catalysts Supported on High and Low Surface Area Alumina and Zirconia. Processes, 2020, 8, 499.	1.3	26
36	Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability. Renewable Energy, 2020, 155, 969-978.	4.3	36

#	ARTICLE	IF	CITATIONS
37	Silica-immobilized ionic liquid BrÃ,nsted acids as highly effective heterogeneous catalysts for the isomerization of <i>n</i> -heptane and <i>n</i> -octane. RSC Advances, 2020, 10, 15282-15292.	1.7	14
38	Effect of Pressure on Na0.5La0.5Ni0.3Al0.7O2.5 Perovskite Catalyst for Dry Reforming of CH4. Catalysts, 2020, 10, 379.	1.6	5
39	Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous Î ³ -Alumina in Dry Reforming of Methane. Processes, 2020, 8, 522.	1.3	18
40	Hydrogen production from CH4 dry reforming over Sc promoted Ni / MCM-41. International Journal of Hydrogen Energy, 2019, 44, 20770-20781.	3.8	40
41	Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2019, 44, 21546-21558.	3.8	47
42	Enhanced coke suppression by using phosphate-zirconia supported nickel catalysts under dry methane reforming conditions. International Journal of Hydrogen Energy, 2019, 44, 27784-27794.	3.8	32
43	Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions. Catalysts, 2019, 9, 473.	1.6	24
44	Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. Materials, 2019, 12, 1777.	1.3	23
45	Nanosized Ni/SBA-15 Catalysts for CO2 Reforming of CH4. Applied Sciences (Switzerland), 2019, 9, 1926.	1.3	14
46	Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 1.3	i0 382 Td (Niâ 22
47	Kinetics of long chain n-paraffin dehydrogenation over a commercial Pt-Sn-K-Mg/î³-Al2O3 catalyst: Model studies using n-dodecane. Applied Catalysis A: General, 2019, 579, 130-140.	2.2	9
48	CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst. Renewable Energy, 2019, 140, 658-667.	4.3	59
49	Kaolin-Supported Ni Catalysts for Dry Methane Reforming: Effect of Cs and Mixed K–Na Promoters. Journal of Chemical Engineering of Japan, 2019, 52, 232-238.	0.3	4
50	Combined Magnesia, Ceria and Nickel catalyst supported over Î ³ -Alumina Doped with Titania for Dry Reforming of Methane. Catalysts, 2019, 9, 188.	1.6	16
51	Bi-metallic catalysts of mesoporous Al2O3 supported on Fe, Ni and Mn for methane decomposition: Effect of activation temperature. Chinese Journal of Chemical Engineering, 2018, 26, 1904-1911.	1.7	17
52	Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst. Arabian Journal of Chemistry, 2018, 11, 405-414.	2.3	60
53	Iridium promoted Ni o/Al ₂ O ₃ â€ZrO ₂ catalyst for dry reforming of methane. Canadian Journal of Chemical Engineering, 2018, 96, 955-960.	0.9	15
54	In Situ Regeneration of Alumina-Supported Cobalt–Iron Catalysts for Hydrogen Production by Catalytic Methane Decomposition. Catalysts, 2018, 8, 567.	1.6	9

#	Article	IF	CITATIONS
55	Evaluation of Co-Ni/Sc-SBA–15 as a novel coke resistant catalyst for syngas production via CO2 reforming of methane. Applied Catalysis A: General, 2018, 567, 102-111.	2.2	42
56	Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: High activity for CO2 reforming, steam–CO2 reforming and oxy–CO2 reforming ofÂCH4. International Journal of Hydrogen Energy, 2018, 43, 12069-12080.	3.8	79
57	Iron catalyst for decomposition of methane: Influence of Al/Si ratio support. Egyptian Journal of Petroleum, 2018, 27, 1221-1225.	1.2	14
58	Influence of promoted 5%Ni/MCM-41 catalysts on hydrogen yield in CO ₂ reforming of CH ₄ . International Journal of Energy Research, 2018, 42, 4120-4130.	2.2	21
59	Gallium-Promoted Ni Catalyst Supported on MCM-41 for Dry Reforming of Methane. Catalysts, 2018, 8, 229.	1.6	22
60	Energetic and exergetic analysis of solar-powered lithium bromide-water absorption cooling system. Journal of Cleaner Production, 2017, 151, 60-73.	4.6	63
61	Study of Methane Decomposition on Fe/MgO-Based Catalyst Modified by Ni, Co, and Mn Additives. Chemical Engineering Communications, 2017, 204, 739-749.	1.5	30
62	CO2-reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst: Effect of support modifiers (Mg, La and Sc) on catalytic stability. Journal of CO2 Utilization, 2017, 21, 395-404.	3.3	83
63	Effect of SO2 on Catalytic CO Oxidation Over Nano-Structured, Mesoporous Au/Ce1â^'xZrxO2 Catalysts. Catalysis Letters, 2017, 147, 2893-2900.	1.4	9
64	Effect of Ce and Co Addition to Fe/Al2O3 for Catalytic Methane Decomposition. Catalysts, 2016, 6, 40.	1.6	25
65	Suitability of Titania and Magnesia as Support for Methane Decomposition Catalyst Using Iron as Active Materials. Journal of Chemical Engineering of Japan, 2016, 49, 552-562.	0.3	2
66	Hydrogen production by catalytic methane decomposition over Ni, Co, and Ni-Co/Al ₂ O ₃ catalyst. Petroleum Science and Technology, 2016, 34, 1617-1623.	0.7	11
67	Iron Oxide Supported on Al ₂ O ₃ Catalyst for Methane Decomposition Reaction: Effect of MgO Additive and Calcination Temperature. Journal of the Chinese Chemical Society, 2016, 63, 205-212.	0.8	11
68	Production of hydrogen from methane over lanthanum supported bimetallic catalysts. International Journal of Hydrogen Energy, 2016, 41, 8193-8198.	3.8	28
69	La 2 O 3 supported bimetallic catalysts for the production of hydrogen and carbon nanomaterials from methane. International Journal of Hydrogen Energy, 2016, 41, 976-983.	3.8	36
70	Rapid investigation of paraffin dehydrogenation catalyst by TPRn/SPI-TOF-MS technique for industrial application. Applied Catalysis A: General, 2016, 514, 241-247.	2.2	2
71	Highly active InOx/TUD-1 catalyst towards Baeyer–Villiger oxidation of cyclohexanone using molecular oxygen and benzaldehyde. Catalysis Communications, 2016, 74, 80-84.	1.6	17
72	Methane decomposition over Fe supported catalysts for hydrogen and nano carbon yield. Catalysis for Sustainable Energy, 2015, 2, 71-82.	0.7	14

#	Article	IF	CITATIONS
73	Influence of Support Type and Metal Loading in Methane Decomposition over Iron Catalyst for Hydrogen Production. Journal of the Chinese Chemical Society, 2015, 62, 592-599.	0.8	23
74	The Effect of Sc Promoter on the Performance of Co/ <scp>TiO₂–P25</scp> Catalyst in Dry Reforming of Methane. Bulletin of the Korean Chemical Society, 2015, 36, 2081-2088.	1.0	20
75	Production of Synthesis Gas via Dry Reforming of Methane over Coâ€Based Catalysts: Effect on H ₂ /CO Ratio and Carbon Deposition. Chemical Engineering and Technology, 2015, 38, 1397-1405.	0.9	15
76	Production of hydrogen and carbon nanofibers from methane over Ni–Co–Al catalysts. International Journal of Hydrogen Energy, 2015, 40, 1774-1781.	3.8	53
77	Methane decomposition over iron catalyst for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 7593-7600.	3.8	136
78	Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 2015, 40, 6818-6826.	3.8	85
79	Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Applied Petrochemical Research, 2015, 5, 329-337.	1.3	28
80	Reforming of Methane by CO ₂ over Bimetallic Ni-Mn/γ-Al ₂ O ₃ Catalyst. Chinese Journal of Chemical Physics, 2014, 27, 214-220.	0.6	13
81	Effect of Nanoâ€support and Type of Active Metal on Reforming of CH ₄ with CO ₂ . Journal of the Chinese Chemical Society, 2014, 61, 461-470.	0.8	9
82	Enhancing hydrogen production by dry reforming process with strontium promoter. International Journal of Hydrogen Energy, 2014, 39, 1680-1687.	3.8	49
83	Activities of Ni-based nano catalysts for CO2–CH4 reforming prepared by polyol process. Fuel Processing Technology, 2014, 122, 141-152.	3.7	60
84	Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent – experiments and COSMO-RS prediction. RSC Advances, 2014, 4, 17597.	1.7	117
85	Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method. International Journal of Hydrogen Energy, 2014, 39, 17009-17023.	3.8	50
86	Solubility of CO2 in deep eutectic solvents: Experiments and modelling using the Peng–Robinson equation of state. Chemical Engineering Research and Design, 2014, 92, 1898-1906.	2.7	165
87	Role of La2O3 as Promoter and Support in Ni/γ-Al2O3 Catalysts for Dry Reforming of Methane. Chinese Journal of Chemical Engineering, 2014, 22, 28-37.	1.7	109
88	Syngas production via CO2 reforming of methane using Co-Sr-Al catalyst. Journal of Industrial and Engineering Chemistry, 2014, 20, 549-557.	2.9	50
89	Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chinese Journal of Catalysis, 2013, 34, 764-768.	6.9	60
90	Sustainable Production of Synthesis Gases via State of the Art Metal Supported Catalytic Systems: An Overview. Journal of the Chinese Chemical Society, 2013, 60, 1297-1308.	0.8	12

#	Article	IF	CITATIONS
91	CO2 Reforming of Methane to Produce Syngas over γ-Al2O3-Supported Ni–Sr Catalysts. Bulletin of the Chemical Society of Japan, 2013, 86, 742-748.	2.0	42
92	Methane Reforming Using a Ni–Ag/Ĵ³-Al ₂ O ₃ Catalyst. Journal of Chemical Engineering of Japan, 2013, 46, 158-161.	0.3	1
93	Modification of alumina support with TiO2-P25 in CO2 reforming of CH4. Journal of Industrial and Engineering Chemistry, 2012, 18, 212-217.	2.9	13
94	Effects of Selected Promoters on Ni/Y-Al2O3 Catalyst Performance in Methane Dry Reforming. Chinese Journal of Catalysis, 2011, 32, 1604-1609.	6.9	69
95	Activity and Carbon Formation of a Low Ni-Loading Alumina-Supported Catalyst. Journal of Chemical Engineering of Japan, 2011, 44, 328-335.	0.3	8
96	Investigation of Suitable Pretreatment for Dry Reforming of Methane Over Ni/Al ₂ O ₃ . Advanced Materials Research, 2011, 233-235, 1665-1673.	0.3	5
97	Simulation of Distillation of a Large Relative Volatility Mixture. Journal of King Saud University, Engineering Sciences, 2003, 15, 13-26.	1.2	0
98	A kinetic model for partial oxidation of ethane to acetic acid on promoted VPO catalyst. Journal of Chemical Technology and Biotechnology, 2000, 75, 1160-1168.	1.6	8
99	The Interaction between Corrosion Processes and Mass Transfer at Rough Surfaces. Journal of King Saud University, Engineering Sciences, 1996, 8, 51-69.	1.2	1
100	Factors Affecting Enrichment of Natural Gas by Polymeric Membranes. Journal of King Saud University, Engineering Sciences, 1995, 7, 35-60.	1.2	1
101	Flow of Oil Emulsion Through Porous Media. Journal of King Saud University, Engineering Sciences, 1994, 6, 1-15.	1.2	2
102	Optimization of the Performance of Packed Bed Fermentor with Immobilized Zymomonas Mobilis for the Production of Fuel Alcohol. Journal of King Saud University, Engineering Sciences, 1993, 5, 1-15.	1.2	0
103	Self-consistent equations for calculating the ideal-gas heat capacity, enthalpy and entropy. II. Additional results. Fluid Phase Equilibria, 1983, 11, 225-232.	1.4	5
104	Catalytic Decomposition of Methane over La ₂ 0 ₃ Supported Mono- and Bimetallic Catalysts. Applied Mechanics and Materials, 0, 625, 275-279.	0.2	1