Cory M Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3411615/publications.pdf Version: 2024-02-01

31	1,547	³⁹⁴⁴²¹	434195
	citations	19	31
papers	citations	h-index	g-index
33	33	33	4598
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Role of IFN-γ and TNF-α-Responsive Regulatory Elements in the Synergistic Induction of Indoleamine Dioxygenase. Journal of Interferon and Cytokine Research, 2005, 25, 20-30.	1.2	178
2	Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9667-9672.	7.1	176
3	Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4631-4638.	7.1	173
4	Synergistic Transcriptional Activation of Indoleamine Dioxygenase by IFN-γ and Tumor Necrosis Factor-α. Journal of Interferon and Cytokine Research, 2003, 23, 413-421.	1.2	118
5	Macrophage depletion using clodronate liposomes decreases tumorigenesis and alters gut microbiota in the AOM/DSS mouse model of colon cancer. American Journal of Physiology - Renal Physiology, 2018, 314, G22-G31.	3.4	113
6	Interleukinâ€12 and Interleukinâ€27 Regulate Macrophage Control of <i>Mycobacterium tuberculosis</i> . Journal of Infectious Diseases, 2008, 198, 359-366.	4.0	88
7	The Intracellular Environment of Human Macrophages That Produce Nitric Oxide Promotes Growth of Mycobacteria. Infection and Immunity, 2013, 81, 3198-3209.	2.2	75
8	Cytokines Involved in Interferon-Î ³ Production by Human Macrophages. Journal of Innate Immunity, 2010, 2, 56-65.	3.8	72
9	NF-κB activation contributes to indoleamine dioxygenase transcriptional synergy induced by IFN-γ and tumor necrosis factor-α. Cytokine, 2006, 35, 53-61.	3.2	54
10	Interferon-γ, tumor necrosis factor, and interleukin-18 cooperate to control growth of Mycobacterium tuberculosis in human macrophages. Cytokine, 2012, 60, 233-241.	3.2	49
11	IL-12 and IL-27 regulate the phagolysosomal pathway in mycobacteria-infected human macrophages. Cell Communication and Signaling, 2014, 12, 16.	6.5	48
12	Global Transcriptional Response to Spermine, a Component of the Intramacrophage Environment, Reveals Regulation of <i>Francisella</i> Gene Expression through Insertion Sequence Elements. Journal of Bacteriology, 2009, 191, 6855-6864.	2.2	45
13	Neonatal macrophages express elevated levels of interleukinâ€⊋7 that oppose immune responses. Immunology, 2013, 139, 484-493.	4.4	43
14	Monoclonal Antibody 11E10, Which Neutralizes Shiga Toxin Type 2 (Stx2), Recognizes Three Regions on the Stx2 A Subunit, Blocks the Enzymatic Action of the Toxin In Vitro, and Alters the Overall Cellular Distribution of the Toxin. Infection and Immunity, 2009, 77, 2730-2740.	2.2	40
15	<i>Mycobacterium tuberculosis</i> infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines. Immunology, 2014, 141, 39-51.	4.4	40
16	Neutralizing antibodies to Shiga toxin type 2 (Stx2) reduce colonization of mice by Stx2-expressing Escherichia coli O157:H7. Vaccine, 2010, 28, 4777-4785.	3.8	35
17	The presence of interleukinâ€⊋7 during monocyteâ€derived dendritic cell differentiation promotes improved antigen processing and stimulation of <scp>T</scp> cells. Immunology, 2015, 144, 649-660.	4.4	33
18	Characterization and Application of a Glucose-Repressible Promoter in <i>Francisella tularensis</i> . Applied and Environmental Microbiology, 2008, 74, 2161-2170.	3.1	28

CORY M ROBINSON

#	Article	IF	CITATIONS
19	Elevated interleukinâ€27 levels in human neonatal macrophages regulate indoleamine dioxygenase in a <scp>STAT</scp> â€1 and <scp>STAT</scp> â€3â€dependent manner. Immunology, 2016, 149, 35-47.	4.4	20
20	Repeated clodronate-liposome treatment results in neutrophilia and is not effective in limiting obesity-linked metabolic impairments. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E358-E372.	3.5	20
21	Interleukin-27 inhibits phagosomal acidification by blocking vacuolar ATPases. Cytokine, 2013, 62, 202-205.	3.2	18
22	The Enigma of Low-Density Granulocytes in Humans: Complexities in the Characterization and Function of LDGs during Disease. Pathogens, 2021, 10, 1091.	2.8	16
23	Murine myeloidâ€derived suppressor cells are a source of elevated levels of interleukinâ€27 in early life and compromise control of bacterial infection. Immunology and Cell Biology, 2019, 97, 445-456.	2.3	15
24	IL-27 regulation of innate immunity and control of microbial growth. Future Science OA, 2020, 6, FSO588.	1.9	10
25	Elevated Levels of Interleukin-27 in Early Life Compromise Protective Immunity in a Mouse Model of Gram-Negative Neonatal Sepsis. Infection and Immunity, 2020, 88, .	2.2	9
26	Genetic engineering of <i>Francisella tularensis</i> LVS for use as a novel live vaccine platform against <i>Pseudomonas aeruginosa</i> infections. Bioengineered, 2015, 6, 82-88.	3.2	8
27	Neonatal low-density granulocytes internalize and kill bacteria but suppress monocyte function using extracellular DNA. Journal of Cell Science, 2021, 134, .	2.0	7
28	The dietary inflammatory index is associated with gastrointestinal infection symptoms in the national health and nutrition examination survey. International Journal of Food Sciences and Nutrition, 2020, 71, 106-115.	2.8	6
29	Myeloid-Derived Suppressor Cells Gain Suppressive Function during Neonatal Bacterial Sepsis. International Journal of Molecular Sciences, 2021, 22, 7047.	4.1	6
30	A Neonatal Imaging Model of Gram-Negative Bacterial Sepsis. Journal of Visualized Experiments, 2020, , .	0.3	2
31	The impact of opioid exposure during pregnancy on the human neonatal immune profile. Pediatric Research, 2022, 92, 1566-1574.	2.3	2