
Hugo J W L Aerts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3411612/publications.pdf Version: 2024-02-01

HUCO LALL AFRE

#	Article	IF	CITATIONS
1	Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 2012, 48, 441-446.	1.3	3,846
2	Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 2017, 77, e104-e107.	0.4	3,458
3	Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 2014, 5, 4006.	5.8	3,355
4	Artificial intelligence in radiology. Nature Reviews Cancer, 2018, 18, 500-510.	12.8	1,953
5	The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020, 295, 328-338.	3.6	1,869
6	Tracking the Evolution of Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2017, 376, 2109-2121.	13.9	1,786
7	Radiomics: the process and the challenges. Magnetic Resonance Imaging, 2012, 30, 1234-1248.	1.0	1,675
8	Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature, 2017, 545, 446-451.	13.7	1,287
9	Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell, 2017, 171, 1259-1271.e11.	13.5	968
10	Artificial intelligence in cancer imaging: Clinical challenges and applications. Ca-A Cancer Journal for Clinicians, 2019, 69, 127-157.	157.7	965
11	Applications and limitations of radiomics. Physics in Medicine and Biology, 2016, 61, R150-R166.	1.6	842
12	Imaging biomarker roadmap for cancer studies. Nature Reviews Clinical Oncology, 2017, 14, 169-186.	12.5	792
13	Machine Learning methods for Quantitative Radiomic Biomarkers. Scientific Reports, 2015, 5, 13087.	1.6	744
14	CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiotherapy and Oncology, 2015, 114, 345-350.	0.3	576
15	Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation. PLoS ONE, 2014, 9, e102107.	1.1	488
16	The Potential of Radiomic-Based Phenotyping in Precision Medicine. JAMA Oncology, 2016, 2, 1636.	3.4	475
17	Inconsistency in large pharmacogenomic studies. Nature, 2013, 504, 389-393.	13.7	467
18	Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Scientific Reports, 2017, 7, 10117.	1.6	391

#	Article	IF	CITATIONS
19	Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Medicine, 2018, 15, e1002711.	3.9	385
20	Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer. Scientific Reports, 2015, 5, 11044.	1.6	384
21	Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging. Clinical Cancer Research, 2019, 25, 3266-3275.	3.2	364
22	Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Annals of Oncology, 2019, 30, 998-1004.	0.6	361
23	Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncológica, 2013, 52, 1391-1397.	0.8	353
24	Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy 18Fluorodeoxyglucose-PET-CT scan. Radiotherapy and Oncology, 2009, 91, 386-392.	0.3	340
25	Predicting outcomes in radiation oncology—multifactorial decision support systems. Nature Reviews Clinical Oncology, 2013, 10, 27-40.	12.5	329
26	The effect of SUV discretization in quantitative FDC-PET Radiomics: the need for standardized methodology in tumor texture analysis. Scientific Reports, 2015, 5, 11075.	1.6	318
27	Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Frontiers in Oncology, 2015, 5, 272.	1.3	318
28	Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer. Cancer Research, 2017, 77, 3922-3930.	0.4	307
29	Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology. Frontiers in Oncology, 2016, 6, 71.	1.3	306
30	Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiotherapy and Oncology, 2016, 119, 480-486.	0.3	266
31	Defining the biological basis of radiomic phenotypes in lung cancer. ELife, 2017, 6, .	2.8	258
32	PharmacoCx: an R package for analysis of large pharmacogenomic datasets. Bioinformatics, 2016, 32, 1244-1246.	1.8	249
33	Vulnerabilities of radiomic signature development: The need for safeguards. Radiotherapy and Oncology, 2019, 130, 2-9.	0.3	233
34	Transparency and reproducibility in artificial intelligence. Nature, 2020, 586, E14-E16.	13.7	233
35	Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma. PLoS ONE, 2015, 10, e0118261.	1.1	207
36	Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR. Scientific Reports, 2017, 7, 5301.	1.6	206

#	Article	IF	CITATIONS
37	External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta OncolÅ ³ gica, 2015, 54, 1423-1429.	0.8	195
38	Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC. Scientific Reports, 2016, 6, 33860.	1.6	189
39	Disparity Between In Vivo EGFR Expression and ⁸⁹ Zr-Labeled Cetuximab Uptake Assessed with PET. Journal of Nuclear Medicine, 2009, 50, 123-131.	2.8	180
40	Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?. Radiotherapy and Oncology, 2018, 129, 421-426.	0.3	175
41	Radiomic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC. Journal of Thoracic Oncology, 2017, 12, 467-476.	0.5	171
42	Repeatability of Multiparametric Prostate MRI Radiomics Features. Scientific Reports, 2019, 9, 9441.	1.6	169
43	Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Scientific Reports, 2013, 3, 3529.	1.6	168
44	Artificial intelligence in radiation oncology. Nature Reviews Clinical Oncology, 2020, 17, 771-781.	12.5	167
45	Cardiac Radiation Dose, Cardiac Disease, and Mortality in Patients With LungÂCancer. Journal of the American College of Cardiology, 2019, 73, 2976-2987.	1.2	163
46	CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiotherapy and Oncology, 2016, 120, 258-266.	0.3	159
47	Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recognition, 2013, 46, 692-702.	5.1	138
48	Artificial intelligence for clinical oncology. Cancer Cell, 2021, 39, 916-927.	7.7	136
49	Current Status and Future Perspectives on Neoadjuvant Therapy in Lung Cancer. Journal of Thoracic Oncology, 2018, 13, 1818-1831.	O.5	133
50	Associations Between Somatic Mutations and Metabolic Imaging Phenotypes in Non–Small Cell Lung Cancer. Journal of Nuclear Medicine, 2017, 58, 569-576.	2.8	131
51	Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer, 2018, 124, 4633-4649.	2.0	125
52	Data Analysis Strategies in Medical Imaging. Clinical Cancer Research, 2018, 24, 3492-3499.	3.2	115
53	Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC. PLoS ONE, 2018, 13, e0206108.	1.1	113
54	Radiographic prediction of meningioma grade by semantic and radiomic features. PLoS ONE, 2017, 12, e0187908.	1.1	109

#	Article	IF	CITATIONS
55	Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nature Communications, 2021, 12, 715.	5.8	101
56	Association of Left Anterior Descending Coronary Artery Radiation Dose With Major Adverse Cardiac Events and Mortality in Patients With Non–Small Cell Lung Cancer. JAMA Oncology, 2021, 7, 206.	3.4	101
57	PET imaging of hypoxia using [18F]HX4: a phase I trial. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1663-1668.	3.3	100
58	A semiautomatic CT-based ensemble segmentation of lung tumors: Comparison with oncologists' delineations and with the surgical specimen. Radiotherapy and Oncology, 2012, 105, 167-173.	0.3	99
59	Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: A prospective validation. Lung Cancer, 2012, 75, 73-76.	0.9	97
60	Deep Learning to Assess Long-term Mortality From Chest Radiographs. JAMA Network Open, 2019, 2, e197416.	2.8	97
61	Deep learning classification of lung cancer histology using CT images. Scientific Reports, 2021, 11, 5471.	1.6	96
62	Enhancing Reproducibility in Cancer Drug Screening: How Do We Move Forward?. Cancer Research, 2014, 74, 4016-4023.	0.4	90
63	Radiomics versus Visual and Histogram-based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An ex Vivo Study. Radiology, 2019, 293, 89-96.	3.6	88
64	A DSA-Based Method Using Contrast-Motion Estimation for the Assessment of the Intra-Aneurysmal Flow Changes Induced by Flow-Diverter Stents. American Journal of Neuroradiology, 2013, 34, 808-815.	1.2	87
65	Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer. Scientific Reports, 2017, 7, 3519.	1.6	87
66	Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT. PLoS ONE, 2017, 12, e0169172.	1.1	87
67	Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncology, 2017, 19, 1688-1697.	0.6	84
68	Stability of 18F-Deoxyglucose Uptake Locations Within Tumor During Radiotherapy for NSCLC: A Prospective Study. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1402-1407.	0.4	81
69	Quantitative Imaging Test Approval and Biomarker Qualification: Interrelated but Distinct Activities. Radiology, 2011, 259, 875-884.	3.6	80
70	Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology, 2015, 57, 1227-1237.	1.1	79
71	Revisiting inconsistency in large pharmacogenomic studies. F1000Research, 2016, 5, 2333.	0.8	79
72	Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features. Scientific Reports, 2015, 5, 16822.	1.6	78

#	Article	IF	CITATIONS
73	Accurate Prediction of Pathological Rectal Tumor Response after Two Weeks of Preoperative Radiochemotherapy Using 18F-Fluorodeoxyglucose-Positron Emission Tomography-Computed Tomography Imaging. International Journal of Radiation Oncology Biology Physics, 2010, 77, 392-399.	0.4	76
74	Artificial intelligence for global health. Science, 2019, 366, 955-956.	6.0	76
75	The ESTRO Breur Lecture 2009. From population to voxel-based radiotherapy: Exploiting intra-tumour and intra-organ heterogeneity for advanced treatment of non-small cell lung cancer. Radiotherapy and Oncology, 2010, 96, 145-152.	0.3	72
76	Externally validated HPV-based prognostic nomogram for oropharyngeal carcinoma patients yields more accurate predictions than TNM staging. Radiotherapy and Oncology, 2014, 113, 324-330.	0.3	72
77	Comparison and validation of genomic predictors for anticancer drug sensitivity. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 597-602.	2.2	70
78	Outcomes by Tumor Histology and KRAS Mutation Status After Lung Stereotactic BodyÂRadiation Therapy for Early-Stage Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2015, 16, 24-32.	1.1	67
79	Deep Learning Using Chest Radiographs to Identify High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model. Annals of Internal Medicine, 2020, 173, 704-713.	2.0	66
80	Increased 18F-deoxyglucose uptake in the lung during the first weeks of radiotherapy is correlated with subsequent Radiation-Induced Lung Toxicity (RILT): A prospective pilot study. Radiotherapy and Oncology, 2009, 91, 415-420.	0.3	64
81	Development and Validation of a Prognostic Model Using Blood Biomarker Information for Prediction of Survival of Non–Small-Cell Lung Cancer Patients Treated With Combined Chemotherapy and Radiation or Radiotherapy Alone (NCT00181519, NCT00573040, and NCT00572325). International lournal of Radiation Oncology Biology Physics. 2011. 81. 360-368.	0.4	61
82	Quantification of arterial flow using digital subtraction angiography. Medical Physics, 2012, 39, 6264-6275.	1.6	59
83	Handcrafted versus deep learning radiomics for prediction of cancer therapy response. The Lancet Digital Health, 2019, 1, e106-e107.	5.9	59
84	Comparison of Texture Features Derived from Static and Respiratory-Gated PET Images in Non-Small Cell Lung Cancer. PLoS ONE, 2014, 9, e115510.	1.1	58
85	Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience. Medical Image Analysis, 2016, 33, 176-180.	7.0	58
86	Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma. BMC Cancer, 2016, 16, 611.	1.1	58
87	Radiomic Biomarkers to Refine Risk Models for Distant Metastasis in HPV-related Oropharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1107-1116.	0.4	57
88	Radiomics features of the primary tumor fail to improve prediction of overall survival in large cohorts of CT- and PET-imaged head and neck cancer patients. PLoS ONE, 2019, 14, e0222509.	1.1	56
89	Use of Crowd Innovation to Develop an Artificial Intelligence–Based Solution for Radiation Therapy Targeting. JAMA Oncology, 2019, 5, 654.	3.4	54
90	Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer (NSCLC): An exploratory clinical study. Radiotherapy and Oncology, 2009, 91, 393-398.	0.3	53

#	Article	IF	CITATIONS
91	Data Science in Radiology: A Path Forward. Clinical Cancer Research, 2018, 24, 532-534.	3.2	52
92	Revisiting inconsistency in large pharmacogenomic studies. F1000Research, 2016, 5, 2333.	0.8	51
93	PET imaging of zirconium-89 labelled cetuximab: A phase I trial in patients with head and neck and lung cancer. Radiotherapy and Oncology, 2017, 122, 267-273.	0.3	48
94	Relationship between the Temporal Changes in Positron-Emission-Tomography-Imaging-Based Textural Features and Pathologic Response and Survival in Esophageal Cancer Patients. Frontiers in Oncology, 2016, 6, 72.	1.3	47
95	Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncológica, 2013, 52, 1398-1404.	0.8	44
96	Impact of experimental design on PET radiomics in predicting somatic mutation status. European Journal of Radiology, 2017, 97, 8-15.	1.2	44
97	Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. Abdominal Radiology, 2020, 45, 632-643.	1.0	42
98	Approaching autonomy in medical artificial intelligence. The Lancet Digital Health, 2020, 2, e447-e449.	5.9	41
99	diXa: a data infrastructure for chemical safety assessment. Bioinformatics, 2015, 31, 1505-1507.	1.8	40
100	System identification theory in pharmacokinetic modeling of dynamic contrastâ€enhanced MRI: Influence of contrast injection. Magnetic Resonance in Medicine, 2008, 59, 1111-1119.	1.9	39
101	Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction. Physics in Medicine and Biology, 2016, 61, 906-922.	1.6	38
102	FDG for dose painting: A rational choice. Radiotherapy and Oncology, 2010, 97, 163-164.	0.3	37
103	Distributed radiomics as a signature validation study using the Personal Health Train infrastructure. Scientific Data, 2019, 6, 218.	2.4	37
104	Binding of cetuximab to the EGFRvIII deletion mutant and its biological consequences in malignant glioma cells. Radiotherapy and Oncology, 2009, 92, 393-398.	0.3	36
105	Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation. PLoS ONE, 2017, 12, e0178944.	1.1	35
106	Quantification of Internal Carotid Artery Flow with Digital Subtraction Angiography: Validation of an Optical Flow Approach with Doppler Ultrasound. American Journal of Neuroradiology, 2014, 35, 156-163.	1.2	34
107	Deep Learning to Estimate Biological Age From Chest Radiographs. JACC: Cardiovascular Imaging, 2021, 14, 2226-2236.	2.3	34
108	Assessment of pharmacogenomic agreement. F1000Research, 2016, 5, 825.	0.8	34

#	Article	IF	CITATIONS
109	Clinical variables and magnetic resonance imagingâ€based radiomics predict human papillomavirus status of oropharyngeal cancer. Head and Neck, 2021, 43, 485-495.	0.9	33
110	Mean Heart Dose Is an Inadequate Surrogate for Left Anterior Descending Coronary Artery Dose and the Risk of Major Adverse Cardiac Events in Lung Cancer Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1473-1479.	0.4	33
111	Tumor Delineation Based on Time–Activity Curve Differences Assessed With Dynamic Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Rectal Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2009, 73, 456-465.	0.4	31
112	Tumor perfusion increases during hypofractionated short-course radiotherapy in rectal cancer: Sequential perfusion-CT findings. Radiotherapy and Oncology, 2010, 94, 156-160.	0.3	31
113	Radiation Therapy Outcomes Models in the Era ofÂRadiomics and Radiogenomics: Uncertainties and Validation. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1070-1073.	0.4	31
114	Reliability of pharmacokinetic parameters: Small vs. mediumâ€sized contrast agents. Magnetic Resonance in Medicine, 2009, 62, 779-787.	1.9	30
115	Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 77, 400-408.	0.4	30
116	Development and evaluation of a cetuximab-based imaging probe to target EGFR and EGFRvIII. Radiotherapy and Oncology, 2007, 83, 326-332.	0.3	28
117	NCI Imaging Data Commons. Cancer Research, 2021, 81, 4188-4193.	0.4	28
118	The precision of pharmacokinetic parameters in dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and duration. Physics in Medicine and Biology, 2011, 56, 5665-5678.	1.6	25
119	Feasibility Study of Needle Placement in Percutaneous Vertebroplasty: Cone-Beam Computed Tomography Guidance Versus Conventional Fluoroscopy. CardioVascular and Interventional Radiology, 2013, 36, 1120-1126.	0.9	23
120	Technical Challenges in the Clinical Application of Radiomics. JCO Clinical Cancer Informatics, 2017, 1, 1-8.	1.0	23
121	Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy. Frontiers in Oncology, 2021, 11, 609054.	1.3	23
122	Hypoxia-Related Radiomics and Immunotherapy Response: A Multicohort Study of Non-Small Cell Lung Cancer. JNCI Cancer Spectrum, 2021, 5, pkab048.	1.4	23
123	Safikhani et al. reply. Nature, 2016, 540, E2-E4.	13.7	22
124	Radiomics of Coronary Artery Calcium in the Framingham Heart Study. Radiology: Cardiothoracic Imaging, 2020, 2, e190119.	0.9	22
125	Evaluation of database-derived pathway development for enabling biomarker discovery for hepatotoxicity. Biomarkers in Medicine, 2014, 8, 185-200.	0.6	21
126	Importance of collection in gene set enrichment analysis of drug response in cancer cell lines. Scientific Reports, 2014, 4, 4092.	1.6	21

8

#	ARTICLE	IF	CITATIONS
127	FAIR ompliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and headâ€Neck1 TCIA collections. Medical Physics, 2020, 47, 5931-5940.	1.6	20
128	Prediction of residual metabolic activity after treatment in NSCLC patients. Acta Oncológica, 2010, 49, 1033-1039.	0.8	19
129	Artificial Intelligence in Radiation Oncology Imaging. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1159-1161.	0.4	19
130	Histopathological Image QTL Discovery of Immune Infiltration Variants. IScience, 2018, 5, 80-89.	1.9	19
131	Radiologic-pathologic correlation of response to chemoradiation in resectable locally advanced NSCLC. Lung Cancer, 2016, 102, 1-8.	0.9	18
132	Changes in Length and Complexity of Clinical Practice Guidelines in Oncology, 1996-2019. JAMA Network Open, 2020, 3, e200841.	2.8	18
133	Semiâ€automated pulmonary nodule interval segmentation using the <scp>NLST</scp> data. Medical Physics, 2018, 45, 1093-1107.	1.6	17
134	Improved outcome prediction of oropharyngeal cancer by combining clinical and MRI features in machine learning models. European Journal of Radiology, 2021, 139, 109701.	1.2	16
135	Statin Use, Heart Radiation Dose, and Survival in Locally Advanced Lung Cancer. Practical Radiation Oncology, 2021, 11, e459-e467.	1.1	16
136	Characterization of Conserved Toxicogenomic Responses in Chemically Exposed Hepatocytes across Species and Platforms. Environmental Health Perspectives, 2016, 124, 313-320.	2.8	15
137	Density and morphology of coronary artery calcium for the prediction of cardiovascular events: insights from the Framingham Heart Study. European Radiology, 2019, 29, 6140-6148.	2.3	15
138	The Future of Artificial Intelligence in Radiation Oncology. International Journal of Radiation Oncology Biology Physics, 2018, 102, 247-248.	0.4	13
139	Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer. Npj Digital Medicine, 2021, 4, 43.	5.7	13
140	Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma. American Journal of Neuroradiology, 2022, 43, 675-681.	1.2	12
141	Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion. International Journal of Radiation Oncology Biology Physics, 2012, 82, 849-855.	0.4	11
142	Safikhani et al. reply. Nature, 2016, 540, E11-E12.	13.7	11
143	Radiomic biomarkers for the prediction of immunotherapy outcome in patients with metastatic non-small cell lung cancer Journal of Clinical Oncology, 2017, 35, e14520-e14520.	0.8	11

144 Safikhani et al. reply. Nature, 2016, 540, E6-E8.

13.7 10

#	Article	IF	CITATIONS
145	T-staging pulmonary oncology from radiological reports using natural language processing: translating into a multi-language setting. Insights Into Imaging, 2021, 12, 77.	1.6	10
146	Sensitivity study of voxelâ€based PET image comparison to image registration algorithms. Medical Physics, 2014, 41, 111714.	1.6	9
147	MO-DE-207B-08: Radiomic CT Features Complement Semantic Annotations to Predict EGFR Mutations in Lung Adenocarcinomas. Medical Physics, 2016, 43, 3706-3706.	1.6	9
148	Elevated Coronary Artery Calcium Quantified by a Validated Deep Learning Model From Lung Cancer Radiotherapy Planning Scans Predicts Mortality. JCO Clinical Cancer Informatics, 2022, 6, e2100095.	1.0	9
149	DICOM reâ€encoding of volumetrically annotated Lung Imaging Database Consortium (LIDC) nodules. Medical Physics, 2020, 47, 5953-5965.	1.6	8
150	Artificial intelligence-derived imaging biomarkers to improve population health. The Lancet Digital Health, 2020, 2, e154-e155.	5.9	8
151	Using deep-learning radiomics to predict lung cancer histology Journal of Clinical Oncology, 2018, 36, 8545-8545.	0.8	8
152	Revisiting inconsistency in large pharmacogenomic studies. F1000Research, 0, 5, 2333.	0.8	8
153	Effectiveness of surgery and individualized high-dose hyperfractionated accelerated radiotherapy on survival in clinical stage I non-small cell lung cancer. A propensity score matched analysis. Radiotherapy and Oncology, 2010, 97, 413-417.	0.3	7
154	Lymph node volume predicts survival but not nodal clearance in Stage IIIA-IIIB NSCLC. PLoS ONE, 2017, 12, e0174268.	1.1	7
155	Clinical Outcomes After Lung Stereotactic Body Radiation Therapy in Patients With or Without a Prior Lung Resection. American Journal of Clinical Oncology: Cancer Clinical Trials, 2018, 41, 695-701.	0.6	7
156	The impact of quantitative CT-based tumor volumetric features on the outcomes of patients with limited stage small cell lung cancer. Radiation Oncology, 2020, 15, 14.	1.2	7
157	Assessing the Effects of Software Platforms on Volumetric Segmentation of Glioblastoma. Journal of Neuroimaging in Psychiatry & Neurology, 2016, 1, 64-72.	0.4	7
158	Outcomes by EGFR, KRAS, and ALK Genotype After Combined Modality Therapy for Locally Advanced Non–Small-Cell Lung Cancer. JCO Precision Oncology, 2018, 2, 1-18.	1.5	5
159	Epicardial Adipose Tissue in Patients With Stable Chest Pain. JACC: Cardiovascular Imaging, 2020, 13, 2273-2275.	2.3	5
160	Artificial Intelligence Applications to Improve the Treatment of Locally Advanced Non-Small Cell Lung Cancers. Cancers, 2021, 13, 2382.	1.7	5
161	Radiomic-Based Phenotyping of Tumor Core and Rim to Predict Survival in Nonsmall Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, S84.	0.4	4
162	Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network. Scientific Reports, 2021, 11, 19586.	1.6	4

#	Article	IF	CITATIONS
163	Interâ€scan and interâ€observer tumour volume delineation variability on cone beam computed tomography in patients treated with stereotactic body radiation therapy for earlyâ€stage nonâ€small cell lung cancer. Journal of Medical Imaging and Radiation Oncology, 2017, 61, 93-98.	0.9	3
164	Left Coronary Artery Dose Exposure Predicts Major Adverse Cardiac Events in Coronary Heart Disease Negative Lung Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2019, 105, S44-S45.	0.4	3
165	Small whole heart volume predicts cardiovascular events in patients with stable chest pain: insights from the PROMISE trial. European Radiology, 2021, 31, 6200-6210.	2.3	3
166	SUâ€Ðâ€⊋07Bâ€02: Early Grade Classification in Meningioma Patients Combining Radiomics and Semantics Data. Medical Physics, 2016, 43, 3348-3349.	1.6	3
167	SUâ€Ðâ€207Bâ€03: A PET T Radiomics Comparison to Predict Distant Metastasis in Lung Adenocarcinoma. Medical Physics, 2016, 43, 3349-3349.	1.6	3
168	Outcomes by EGFR, KRAS and ALK Genotype After Combined Modality Therapy for Locally Advanced Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 96, S156.	0.4	2
169	TU-A-12A-10: Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation. Medical Physics, 2014, 41, 452-452.	1.6	2
170	TUâ€CDâ€BRBâ€04: Automated Radiomic Features Complement the Prognostic Value of VASARI in the TCGAâ€GBM Dataset. Medical Physics, 2015, 42, 3603-3603.	1.6	2
171	A deep-learning radiomics model for predicting survival in early-stage non-small cell lung cancer Journal of Clinical Oncology, 2018, 36, 8528-8528.	0.8	2
172	SU-F-R-53: CT-Based Radiomics Analysis of Non-Small Cell Lung Cancer Patients Treated with Stereotactic Body Radiation Therapy. Medical Physics, 2016, 43, 3385-3385.	1.6	2
173	Radiomics Predict Pathological Response in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 96, E586.	0.4	1
174	CT-Based Radiomic Biomarker Features Predict Prognosis in Patients with Limited Stage Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, S12-S13.	0.4	1
175	Cardiac Events after Radiation Therapy (RT) for Stage II-III Non-Small Cell Lung Cancer (NSCLC): Analysis of 748 Patients. International Journal of Radiation Oncology Biology Physics, 2018, 102, S90-S91.	0.4	1
176	Deep learning radiomics distinguishes intrapulmonary disease from metastases in immunotherapy-treated melanoma patients. Annals of Oncology, 2019, 30, v529.	0.6	1
177	Elevated Coronary Artery Calcium Quantified by a Deep Learning Model from Radiotherapy Planning Scans Predicts Mortality in Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, S72.	0.4	1
178	SUâ€Eâ€Jâ€246: CTâ€Based Volumetric Features Are Associated with Somatic Mutations in Lung Cancer. Medical Physics, 2015, 42, 3322-3323.	1.6	1
179	TU-AB-BRA-11: Evaluation of Fully Automatic Volumetric CBM Segmentation in the TCCA-GBM Dataset: Prognosis and Correlation with VASARI Features. Medical Physics, 2015, 42, 3589-3589.	1.6	1
180	TU-D-207B-06: Pathological Response Prediction by Radiomic Data From Primary and Lymph Nodes in NSCLC. Medical Physics, 2016, 43, 3751-3751.	1.6	1

#	Article	IF	CITATIONS
181	TU-D-207B-07: Radiomic Response Assessment for Recurrent Glioblastoma Treated with Bevacizumab in the BRAIN Trial. Medical Physics, 2016, 43, 3751-3752.	1.6	1
182	SUâ€GGâ€lâ€05: CTâ€Perfusion and FDGâ€PET Imaging in Rectal Cancer: New Insights into Tumor Vasculature. Medical Physics, 2010, 37, 3102-3102.	1.6	1
183	MO-D-WAB-01: How OMICs Is Going to Impact Research Topics for Medical Physicists. Medical Physics, 2013, 40, 398-399.	1.6	1
184	TU-AB-BRA-12: Impact of Image Registration Algorithms On the Prediction of Pathological Response with Radiomic Textures. Medical Physics, 2015, 42, 3589-3589.	1.6	1
185	Deep learning to identify high-risk smokers for lung cancer screening from chest radiographs Journal of Clinical Oncology, 2020, 38, 1519-1519.	0.8	1
186	Simple delineations cannot substitute full 3d tumor delineations for MR-based radiomics prediction of locoregional control in oropharyngeal cancer. European Journal of Radiology, 2022, 148, 110167.	1.2	1
187	D7-05: FDG-PET allows identification of radioresistant areas within the tumor during and after radiation treatment of NSCLC. Journal of Thoracic Oncology, 2007, 2, S411-S412.	0.5	0
188	PD3-1-3: Zirconium-89 labeled Cetuximab: A very promising imaging probe to monitor and quantify EGFR expression non-invasively in vivo. Journal of Thoracic Oncology, 2007, 2, S459.	0.5	0
189	Disparity Between In Vivo Zirconium-89-Labeled Cetuximab Uptake and EGFR Expression. International Journal of Radiation Oncology Biology Physics, 2007, 69, S150.	0.4	0
190	Improving physical behavior in image registration. , 2008, , .		0
191	Identification of Residual Metabolic-active Areas within Lung Tumors using a Pre-radiotherapy FDG-PET-CT Scan. International Journal of Radiation Oncology Biology Physics, 2009, 75, S611-S612.	0.4	0
192	PREDICTION OF PATHOLOGICAL RECTAL TUMOR RESPONSE AFTER 2 WEEKS OF RADIO CHEMOTHERAPY USING PET-IMAGING. Radiotherapy and Oncology, 2009, 92, S122-S123.	0.3	0
193	SYSTEM IDENTIFICATION THEORY APPLIED TO PHARMACOKINETIC MODELING IN DYNAMIC CONTRAST-ENHANCED CT AND MRI. Radiotherapy and Oncology, 2009, 92, S83.	0.3	0
194	COMPARISON BETWEEN PERFUSION-CT AND DYNAMIC CONTRAST-ENHANCED MRI IN RECTAL CANCER. Radiotherapy and Oncology, 2009, 92, S81.	0.3	0
195	85 PRE-RADIATION TREATMENT PET/CT SCAN CAN PREDICT THE LOCALIZATION OF RESIDUAL DISEASE POST-TREATMENT IN LUNG CANCER. Radiotherapy and Oncology, 2009, 92, S27.	0.3	0
196	112 poster: Non Invasive Imaging of Cetuximab-Zirconium-89 Uptake with Pet Scans: a Phase I Trial. Radiotherapy and Oncology, 2010, 94, S43.	0.3	0
197	Identification of Residual Metabolic-active Areas within Lung Tumors using a Pre-radiotherapy FDG-PET-CT Scan. International Journal of Radiation Oncology Biology Physics, 2010, 78, S510-S511.	0.4	0
198	168 oral THE ADDED VALUE OF TEXTURE- AND SHAPE-BASED FEATURES FROM CT-IMAGING FOR RESPONSE PREDICTION IN LOCALLY ADVANCED RECTAL CANCER. Radiotherapy and Oncology, 2011, 99, S64-S65.	0.3	0

#	Article	IF	CITATIONS
199	471 poster CT-BASED AUTO-SEGMENTATION OF LUNG TUMORS SHOWS HIGH OVERLAP WITH ONCOLOGIST DELINEATIONS AND PATHOLOGY. Radiotherapy and Oncology, 2011, 99, S190-S191.	0.3	0
200	474 poster AUTOMATIC PET-BASED TUMOR CONTOURING: SIGNAL-TO-BACKGROUND RATIO VERSUS GRADIENT-BASED CONTOURING. Radiotherapy and Oncology, 2011, 99, S192.	0.3	0
201	The Effect Of Respiratory Motion On Pet Imaging Of Tumor Heterogeneity In Non-small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2014, 90, S25-S26.	0.4	Ο
202	Outcomes and Toxicity After Lung Stereotactic Body Radiation Therapy (SBRT) in Patients (Pts) With a History of Prior Lung Resection or Radiofrequency Ablation (RFA). International Journal of Radiation Oncology Biology Physics, 2014, 90, S660.	0.4	0
203	Local Textural Feature Changes as Predictors of Pathologic Response in Esophageal Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2015, 93, S41.	0.4	Ο
204	Mediastinal Lymph Node Volume Is Associated With Locoregional Recurrence and Overall Survival in Stage IIIA-IIIB Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 96, E451.	0.4	0
205	Radiomics Analysis of Stereotactic Body Radiation Therapy Patients With Lung Cancer Predicts Recurrent Disease. International Journal of Radiation Oncology Biology Physics, 2016, 96, E585.	0.4	0
206	A Radiomic Prognostic Index Refines Risk Models for Distant Metastasis in HPV-Related Oropharyngeal Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, E603.	0.4	0
207	MA18.01 Non-Small Cell Lung Cancer Risk Assessment with Artificial Neural Networks. Journal of Thoracic Oncology, 2018, 13, S418.	0.5	0
208	Deep Learning Based Tracking of Imaging Phenotypes to Improve Therapy Survival Prediction. International Journal of Radiation Oncology Biology Physics, 2018, 102, e504.	0.4	0
209	PO-0951 How to build accurate prediction models without sharing patient data across hospitals?. Radiotherapy and Oncology, 2019, 133, S514-S515.	0.3	0
210	PL01.04 Artificial Intelligence, Big Data and Lung Cancer: Ready to Implement?. Journal of Thoracic Oncology, 2019, 14, S4.	0.5	0
211	Artificial Intelligence and Radiomics: Outlook into the Future. , 2020, , 335-342.		0
212	Radiomics. , 2021, , 1-12.		0
213	MO-G-BRF-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - Sensitivity of PET-Based Texture Features to Respiratory Motion in Non-Small Cell Lung Cancer (NSCLC). Medical Physics, 2014, 41, 434-434.	1.6	0
214	WE-E-17A-04: CT Based Radiomics Data Predicts for Nodal Involvement and Overall Survival in NSCLC. Medical Physics, 2014, 41, 508-508.	1.6	0
215	TUâ€CDâ€BRBâ€02: BEST IN PHYSICS (JOINT IMAGINGâ€THERAPY): Identification of Molecular Phenotypes by Integrating Radiomics and Genomics. Medical Physics, 2015, 42, 3602-3602.	1.6	0
216	SUâ€Eâ€Jâ€266: Cone Beam Computed Tomography (CBCT) Interâ€5can and Interâ€Observer Tumor Volume Variability Assessment in Patients Treated with Stereotactic Body Radiation Therapy (SBRT) for Early Stage Nonâ€Small Cell Lung Cancer (NSCLC). Medical Physics, 2015, 42, 3328-3328.	1.6	0

#	Article	IF	CITATIONS
217	TUâ€Gâ€303â€02: Robust Radiomics Methods for PET and CT Imaging. Medical Physics, 2015, 42, 3632-3632.	1.6	0
218	SU-F-R-52: A Comparison of the Performance of Radiomic Features From Free Breathing and 4DCT Scans in Predicting Disease Recurrence in Lung Cancer SBRT Patients. Medical Physics, 2016, 43, 3385-3385.	1.6	0
219	MO-FG-207B-01: Thorax/Lung. Medical Physics, 2016, 43, 3715-3715.	1.6	0
220	MO-DE-207B-01: JACK FOWLER JUNIOR INVESTIGATOR COMPETITION WINNER: Between Somatic Mutations and PET-Based Radiomic Features in Non-Small Cell Lung Cancer. Medical Physics, 2016, 43, 3704-3704.	1.6	0
221	Body fat composition as biomarker for clinical outcomes and treatment tolerance in high-risk prostate cancer Journal of Clinical Oncology, 2022, 40, 159-159.	0.8	0
222	Using virtual clinical trials to determine the accuracy of AI-based quantitative imaging biomarkers in oncology trials using standard-of-care CT. , 2022, , .		0
223	Low skeletal muscle area and association with toxicity and hospitalization with chemotherapy in advanced non–small cell lung cancer Journal of Clinical Oncology, 2022, 40, 8532-8532.	0.8	0