Mingxun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3411498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Seed Fatty Acid Reducer</i> acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in <i>Arabidopsis</i> . Plant, Cell and Environment, 2012, 35, 2155-2169.	5.7	93
2	Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana. Plant Science, 2018, 268, 47-53.	3.6	90
3	MYB89 Transcription Factor Represses Seed Oil Accumulation. Plant Physiology, 2017, 173, 1211-1225.	4.8	87
4	The Effect of <i>TRANSPARENT TESTA2</i> on Seed Fatty Acid Biosynthesis and Tolerance to Environmental Stresses during Young Seedling Establishment in Arabidopsis Â. Plant Physiology, 2012, 160, 1023-1036.	4.8	79
5	TRANSPARENT TESTA8 Inhibits Seed Fatty Acid Accumulation by Targeting Several Seed Development Regulators in Arabidopsis. Plant Physiology, 2014, 165, 905-916.	4.8	78
6	<i>TRANSPARENT TESTA GLABRA1</i> Regulates the Accumulation of Seed Storage Reserves in Arabidopsis. Plant Physiology, 2015, 169, 391-402.	4.8	71
7	<i><scp>TRANSPARENT TESTA</scp>2</i> regulates embryonic fatty acid biosynthesis by targeting <i><scp>FUSCA</scp>3</i> during the early developmental stage of <scp>A</scp> rabidopsis seeds. Plant Journal, 2014, 77, 757-769.	5.7	63
8	Removal of DELLA repression promotes leaf senescence in Arabidopsis. Plant Science, 2014, 219-220, 26-34.	3.6	63
9	MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis. Plant Physiology and Biochemistry, 2016, 108, 63-70.	5.8	40
10	MYB76 Inhibits Seed Fatty Acid Accumulation in Arabidopsis. Frontiers in Plant Science, 2017, 8, 226.	3.6	30
11	<i>TRANSPARENT TESTA 4</i> â€mediated flavonoids negatively affect embryonic fatty acid biosynthesis in <i>Arabidopsis</i> . Plant, Cell and Environment, 2018, 41, 2773-2790.	5.7	26
12	Genome-Wide Identification of Direct Targets of the TTG1–bHLH–MYB Complex in Regulating Trichome Formation and Flavonoid Accumulation in Arabidopsis Thaliana. International Journal of Molecular Sciences, 2019, 20, 5014.	4.1	25
13	Melatonin Represses Oil and Anthocyanin Accumulation in Seeds. Plant Physiology, 2020, 183, 898-914.	4.8	25
14	Novel parameters characterizing size distribution of A and B starch granules in the gluten network: Effects on dough stability in bread wheat. Carbohydrate Polymers, 2021, 257, 117623.	10.2	23
15	TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). Plant Science, 2017, 254, 60-69.	3.6	22
16	Satellite Observations of the Recovery of Forests and Grasslands in Western China. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1905-1922.	3.0	20
17	Drought-Induced Carbon and Water Use Efficiency Responses in Dryland Vegetation of Northern China. Frontiers in Plant Science, 2019, 10, 224.	3.6	17
18	Linum usitatissimum FAD2A and FAD3A enhance seed polyunsaturated fatty acid accumulation and seedling cold tolerance in Arabidopsis thaliana. Plant Science, 2021, 311, 111014.	3.6	17

MINGXUN CHEN

#	Article	IF	CITATIONS
19	Comparison of vitality between seedlings germinated from black-coated and yellow-coated seeds of a turnip rape (Brassica rapa L.) subjected to NaCl and CdCl2 stresses. Plant Growth Regulation, 2015, 76, 61-70.	3.4	11
20	Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis. Biochemical and Biophysical Research Communications, 2017, 485, 360-365.	2.1	11
21	Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus. BMC Plant Biology, 2021, 21, 6.	3.6	11
22	Overexpression of <i>BnaAGL11</i> , a MADS-Box Transcription Factor, Regulates Leaf Morphogenesis and Senescence in <i>Brassica napus</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 3420-3434.	5.2	9
23	The effect of BnTT8 on accumulation of seed storage reserves and tolerance to abiotic stresses during Arabidopsis seedling establishment. Plant Growth Regulation, 2017, 82, 271-280.	3.4	8
24	Transcriptome analysis reveals key genes in response to salinity stress during seed germination in Setaria italica. Environmental and Experimental Botany, 2021, 191, 104604.	4.2	8
25	Functional characterization of Brassica napus DNA topoisomerase lα-1 and its effect on flowering time when expressed in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2017, 486, 124-129.	2.1	2
26	The possible role of BnaA10.SOI.a in seed fatty acid biosynthesis of rapeseed. Plant Breeding, 2020, 139, 167-175.	1.9	0