Jonathan Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3410644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The CLoud–Aerosol–Radiation Interaction and Forcing: YearÂ2017 (CLARIFY-2017) measurement campaign. Atmospheric Chemistry and Physics, 2021, 21, 1049-1084.	4.9	57
2	Rapid transformation of ambient absorbing aerosols from West African biomass burning. Atmospheric Chemistry and Physics, 2021, 21, 9417-9440.	4.9	25
3	Investigating Carbonaceous Aerosol and Its Absorption Properties From Fires in the Western United States (WEâ \in CAN) and Southern Africa (ORACLES and CLARIFY). Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034984.	3.3	21
4	Small ice particles at slightly supercooled temperatures in tropical maritime convection. Atmospheric Chemistry and Physics, 2020, 20, 3895-3904.	4.9	14
5	Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 4059-4084.	4.9	21
6	Development of aerosol activation in the double-moment Unified Model and evaluation with CLARIFY measurements. Atmospheric Chemistry and Physics, 2020, 20, 10997-11024.	4.9	7
7	Absorption closure in highly aged biomass burning smoke. Atmospheric Chemistry and Physics, 2020, 20, 11201-11221.	4.9	29
8	Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmospheric Chemistry and Physics, 2020, 20, 12697-12719.	4.9	33
9	Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. Atmospheric Measurement Techniques, 2019, 12, 3417-3434.	3.1	34
10	Aerosol influences on low-level clouds in the West African monsoon. Atmospheric Chemistry and Physics, 2019, 19, 8503-8522.	4.9	19
11	The radiative impact of out-of-cloud aerosol hygroscopic growth during the summer monsoon in southern West Africa. Atmospheric Chemistry and Physics, 2019, 19, 1505-1520.	4.9	20
12	Remote biomass burning dominates southern West African air pollution during the monsoon. Atmospheric Chemistry and Physics, 2019, 19, 15217-15234.	4.9	29
13	The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: Overview and Research Highlights. Bulletin of the American Meteorological Society, 2018, 99, 83-104.	3.3	62
14	Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D. Atmospheric Chemistry and Physics, 2018, 18, 3817-3838.	4.9	38
15	Atmospheric Iceâ€Nucleating Particles in the Dusty Tropical Atlantic. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2175-2193.	3.3	66
16	Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic. Atmospheric Chemistry and Physics, 2018, 18, 17225-17257.	4.9	80
17	Numerical simulations of aerosol radiative effects and their impact on clouds and atmospheric dynamics over southern West Africa. Atmospheric Chemistry and Physics, 2018, 18, 9767-9788.	4.9	36
18	Black-carbon absorption enhancement in the atmosphere determined by particle mixingÂstate. Nature Geoscience, 2017, 10, 184-188.	12.9	303

#	Article	IF	CITATIONS
19	Evaluating the influence of laser wavelength and detection stage geometry on optical detection efficiency in a single-particle mass spectrometer. Atmospheric Measurement Techniques, 2016, 9, 6051-6068.	3.1	21
20	The Convective Precipitation Experiment (COPE): Investigating the Origins of Heavy Precipitation in the Southwestern United Kingdom. Bulletin of the American Meteorological Society, 2016, 97, 1003-1020.	3.3	40
21	Aerosol measurements during COPE: composition, size, and sources of CCN and INPs at the interface between marine and terrestrial influences. Atmospheric Chemistry and Physics, 2016, 16, 11687-11709.	4.9	16
22	Observations of cloud microphysics and ice formation during COPE. Atmospheric Chemistry and Physics, 2016, 16, 799-826.	4.9	55
23	Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean. Atmospheric Chemistry and Physics, 2016, 16, 13945-13967.	4.9	31
24	The effect of complex black carbon microphysics on the determination of the optical properties of brown carbon. Geophysical Research Letters, 2015, 42, 613-619.	4.0	77
25	Aged boreal biomass-burning aerosol size distributions from BORTAS 2011. Atmospheric Chemistry and Physics, 2015, 15, 1633-1646.	4.9	43
26	Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires. Atmospheric Chemistry and Physics, 2015, 15, 3077-3095.	4.9	61
27	Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral. Atmospheric Chemistry and Physics, 2015, 15, 6667-6688.	4.9	96
28	The importance of Asia as a source of black carbon to the European Arctic during springtime 2013. Atmospheric Chemistry and Physics, 2015, 15, 11537-11555.	4.9	48
29	lodine observed in new particle formation events in the Arctic atmosphere during ACCACIA. Atmospheric Chemistry and Physics, 2015, 15, 5599-5609.	4.9	102
30	Assessment of the sensitivity of core / shell parameters derived using the single-particle soot photometer to density and refractive index. Atmospheric Measurement Techniques, 2015, 8, 1701-1718.	3.1	98
31	Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,272.	3.3	69
32	Estimated contributions of primary and secondary organic aerosol from fossil fuel combustion during the CalNex and Cal-Mex campaigns. Atmospheric Environment, 2014, 88, 330-340.	4.1	23
33	Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,826-11,849.	3.3	116
34	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric Chemistry and Physics, 2014, 14, 10013-10060.	4.9	62
35	Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. Atmospheric Chemistry and Physics, 2014, 14, 10061-10084.	4.9	171
36	Size-dependent wet removal of black carbon in Canadian biomass burning plumes. Atmospheric Chemistry and Physics, 2014, 14, 13755-13771.	4.9	85

JONATHAN TAYLOR

#	Article	IF	CITATIONS
37	A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment. Atmospheric Chemistry and Physics, 2014, 14, 8449-8460.	4.9	19
38	Droplet activation properties of organic aerosols observed at an urban site during CalNex‣A. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2903-2917.	3.3	73
39	Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview. Atmospheric Chemistry and Physics, 2013, 13, 6239-6261.	4.9	52
40	Ozone photochemistry in boreal biomass burning plumes. Atmospheric Chemistry and Physics, 2013, 13, 7321-7341.	4.9	64
41	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9233-9257.	3.3	231
42	Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1777-1803.	3.3	15
43	Single Particle Soot Photometer intercomparison at the AIDA chamber. Atmospheric Measurement Techniques, 2012, 5, 3077-3097.	3.1	152
44	Evolution of trace gases and particles emitted by a chaparral fire in California. Atmospheric Chemistry and Physics, 2012, 12, 1397-1421.	4.9	300