
Stefan F Schreier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3410296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intercomparison of NO ₂ , O ₄ , O ₃ and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2. Atmospheric Measurement Techniques, 2020, 13, 2169-2208.	1.2	52
2	Estimates of free-tropospheric NO ₂ and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations at midlatitudes and in the tropics. Atmospheric Chemistry and Physics, 2016, 16, 2803-2817.	1.9	21
3	Dual ground-based MAX-DOAS observations in Vienna, Austria: Evaluation of horizontal and temporal NO2, HCHO, and CHOCHO distributions and comparison with independent data sets. Atmospheric Environment: X, 2020, 5, 100059.	0.8	18
4	The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from numerical weather prediction and regional climate model simulations. International Journal of Biometeorology, 2013, 57, 207-223.	1.3	14
5	Evaluating different methods for elevation calibration of MAX-DOAS (Multi AXis Differential Optical) Tj ETQq1 1 (Techniques, 2020, 13, 685-712.).784314 1.2	rgBT /Overloc 11
6	Near-surface and path-averaged mixing ratios of NO ₂ derived from car DOAS zenith-sky and tower DOAS off-axis measurements in Vienna: a case study. Atmospheric Chemistry and Physics, 2019, 19, 5853-5879.	1.9	9
7	Glyoxal tropospheric column retrievals from TROPOMI – multi-satellite intercomparison and ground-based validation. Atmospheric Measurement Techniques, 2021, 14, 7775-7807.	1.2	7
8	Full-azimuthal imaging-DOAS observations of NO ₂ and O ₄ during CINDI-2. Atmospheric Measurement Techniques, 2019, 12, 4171-4190.	1.2	5
9	Evaluation of UV–visible MAX-DOAS aerosol profiling products by comparison with ceilometer, sun photometer, and in situ observations in Vienna, Austria. Atmospheric Measurement Techniques, 2021, 14, 5299-5318.	1.2	5
10	An analysis of 30 years of surface ozone concentrations in Austria: temporal evolution, changes in precursor emissions and chemical regimes, temperature dependence, and lessons for the future. Environmental Science Atmospheres, 2022, 2, 601-615.	0.9	3
11	Investigating the Link Between Glyoxal and Biogenic Activities. Springer Earth System Sciences, 2015, , 59-65.	0.1	1
12	Estimates of NOx Emission Factors from GOME-2 Measurements for the Major Types of Open Biomass Burning. Springer Earth System Sciences, 2015, , 67-75.	0.1	0