Patrick M Shih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3410219/publications.pdf

Version: 2024-02-01

49 papers

3,347 citations

236925 25 h-index 206112 48 g-index

54 all docs

54 does citations

times ranked

54

4540 citing authors

#	Article	IF	CITATIONS
1	Heinz-resistant tomato cultivars exhibit a lignin-based resistance to field dodder (<i>Cuscuta) Tj ETQq1 1 0.78431</i>	4 ₄ rgBT /Ov	verlock 10 T
2	Nitrogen Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Applied and Environmental Microbiology, 2022, 88, e0243021.	3.1	8
3	Optimization of Heterologous Glucoraphanin Production <i>In Planta</i> . ACS Synthetic Biology, 2022, 11, 1865-1873.	3.8	4
4	Plant-based engineering for production of high-valued natural products. Natural Product Reports, 2022, 39, 1492-1509.	10.3	9
5	Granick revisited: Synthesizing evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages and horizontal gene transfer. PLoS ONE, 2021, 16, e0239248.	2.5	10
6	Correction for Thompson et al., "Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing― Applied and Environmental Microbiology, 2021, 87, .	3.1	0
7	Draft Genome Sequence of Mycobacterium sp. Strain JC1 DSM 3803. Microbiology Resource Announcements, 2021, 10, .	0.6	O
8	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	9.3	99
9	In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product. Metabolic Engineering, 2021, 66, 148-156.	7.0	12
10	From breeding to genome design: A genomic makeover for potatoes. Cell, 2021, 184, 3843-3845.	28.9	2
11	Utilizing Plant Synthetic Biology to Improve Human Health and Wellness. Frontiers in Plant Science, 2021, 12, 691462.	3.6	13
12	Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Genetics, 2021, 17, e1009725.	3.5	18
13	Overexpression of the rice BAHD acyltransferase AT10 increases xylan-bound p-coumarate and reduces lignin in Sorghum bicolor. Biotechnology for Biofuels, 2021, 14, 217.	6.2	16
14	Defining and engineering bioenergy plant feedstock ideotypes. Current Opinion in Biotechnology, 2020, 62, 196-201.	6.6	9
15	Engineering Plant Synthetic Pathways for the Biosynthesis of Novel Antifungals. ACS Central Science, 2020, 6, 1394-1400.	11.3	22
16	Novel bacterial clade reveals origin of form I Rubisco. Nature Plants, 2020, 6, 1158-1166.	9.3	46
17	Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Applied and Environmental Microbiology, 2020, 86, .	3.1	52
18	Design of orthogonal regulatory systems for modulating gene expression in plants. Nature Chemical Biology, 2020, 16, 857-865.	8.0	57

#	Article	IF	Citations
19	Cell biology of photosynthesis over geologic time. Current Biology, 2020, 30, R490-R494.	3.9	26
20	Accumulation of high-value bioproducts <i>in planta</i> can improve the economics of advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8639-8648.	7.1	57
21	Draft Genome Sequence of Agrobacterium fabrum ARqua1. Microbiology Resource Announcements, 2020, 9, .	0.6	4
22	Biosystems Design to Accelerate C ₃ -to-CAM Progression. Biodesign Research, 2020, 2020, .	1.9	16
23	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	1.9	16
24	<i>Agrobacterium tumefaciens</i> : A Bacterium Primed for Synthetic Biology. Biodesign Research, 2020, 2020, .	1.9	14
25	Robust Characterization of Two Distinct Glutarate Sensing Transcription Factors of <i>Pseudomonas putida</i> <scp>I</scp> -Lysine Metabolism. ACS Synthetic Biology, 2019, 8, 2385-2396.	3.8	17
26	Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nature Communications, 2019, 10, 463.	12.8	87
27	Early Cyanobacteria and the Innovation of Microbial Sunscreens. MBio, 2019, 10, .	4.1	7
28	The evolution and productivity of carbon fixation pathways in response to changes in oxygen concentration over geological time. Free Radical Biology and Medicine, 2019, 140, 188-199.	2.9	59
29	Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology. Plant Science, 2018, 273, 84-91.	3.6	31
30	Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology, 2018, 46, 135-138.	4.4	148
31	MetaPOAP: presence or absence of metabolic pathways in metagenome-assembled genomes. Bioinformatics, 2018, 34, 4284-4286.	4.1	50
32	Bacterial diversification through geological time. Nature Ecology and Evolution, 2018, 2, 1458-1467.	7.8	81
33	Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer. Frontiers in Microbiology, 2018, 9, 260.	3.5	143
34	Increased drought tolerance in plants engineered for low lignin and low xylan content. Biotechnology for Biofuels, 2018, 11, 195.	6.2	33
35	Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnology for Biofuels, 2018, 11, 2.	6.2	38
36	Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10749-10754.	7.1	108

#	Article	IF	CITATIONS
37	Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. Plant Journal, 2016, 87, 103-117.	5.7	44
38	Biochemical characterization of predicted Precambrian RuBisCO. Nature Communications, 2016, 7, 10382.	12.8	112
39	A robust gene-stacking method utilizing yeast assembly for plant synthetic biology. Nature Communications, 2016, 7, 13215.	12.8	59
40	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
41	Cyanobacterial Evolution: Fresh Insight into Ancient Questions. Current Biology, 2015, 25, R192-R193.	3.9	24
42	Photosynthesis and early Earth. Current Biology, 2015, 25, R855-R859.	3.9	46
43	Bayesian Analysis of Congruence of Core Genes in Prochlorococcus and Synechococcus and Implications on Horizontal Gene Transfer. PLoS ONE, 2014, 9, e85103.	2.5	12
44	Introduction of a Synthetic CO2-fixing Photorespiratory Bypass into a Cyanobacterium. Journal of Biological Chemistry, 2014, 289, 9493-9500.	3.4	87
45	Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME Journal, 2013, 7, 2178-2191.	9.8	217
46	Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1053-1058.	7.1	769
47	Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12355-12360.	7.1	126
48	Arabidopsis thaliana PGR7 Encodes a Conserved Chloroplast Protein That Is Necessary for Efficient Photosynthetic Electron Transport. PLoS ONE, 2010, 5, e11688.	2.5	18
49	Direct Identification of the Meloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential. PLoS Pathogens, 2008, 4, e1000192.	4.7	225