Xiaoping Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3410151/publications.pdf

Version: 2024-02-01

331259 454577 3,135 31 21 30 citations h-index g-index papers 31 31 31 3652 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Research, 2022, 15, 2576-2581.	5.8	11
2	Highly Regulatable Heat Conductance of Graphene–Sericin Hybrid for Responsive Textiles. Advanced Functional Materials, 2022, 32, .	7.8	21
3	Superior Unidirectional Water Transport and Mechanically Stable 3D Orthogonal Woven Fabric for Human Body Moisture and Thermal Management. Small, 2022, 18, e2107150.	5.2	54
4	Silkworm Silk Fibers with Multiple Reinforced Properties Obtained through Feeding Ag Nanowires. Advanced Fiber Materials, 2022, 4, 547-555.	7.9	15
5	Superior Unidirectional Water Transport and Mechanically Stable 3D Orthogonal Woven Fabric for Human Body Moisture and Thermal Management (Small 10/2022). Small, 2022, 18, .	5.2	2
6	Mechanically Reinforced Silkworm Silk Fiber by Hot Stretching. Research, 2022, 2022, 9854063.	2.8	5
7	Hydrophilic, Breathable, and Washable Graphene Decorated Textile Assisted by Silk Sericin for Integrated Multimodal Smart Wearables. Advanced Functional Materials, 2022, 32, .	7.8	54
8	Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread. Nature Communications, 2022, 13, 2731.	5.8	8
9	Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration. Small, 2021, 17, e2100066.	5.2	21
10	Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Advanced Healthcare Materials, 2021, 10, e2100646.	3.9	62
11	Smart Fibers and Textiles for Personal Health Management. ACS Nano, 2021, 15, 12497-12508.	7.3	124
12	Sustainable Silkâ€Derived Multimode Carbon Dots. Small, 2021, 17, e2103623.	5.2	21
13	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	8.5	159
14	Stable and Biocompatible Carbon Nanotube Ink Mediated by Silk Protein for Printed Electronics. Advanced Materials, 2020, 32, e2000165.	11.1	184
15	Spontaneous Alignment of Graphene Oxide in Hydrogel during 3D Printing for Multistimuliâ€Responsive Actuation. Advanced Science, 2020, 7, 1903048.	5.6	51
16	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11825-11832.	4.0	67
17	Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing. ACS Nano, 2020, 14, 3219-3226.	7.3	159
18	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. ACS Applied Electronic Materials, 2019, 1, 2415-2421.	2.0	38

#	Article	IF	CITATIONS
19	Integrated textile sensor patch for real-time and multiplex sweat analysis. Science Advances, 2019, 5, eaax0649.	4.7	345
20	Calcium Gluconate Derived Carbon Nanosheet Intrinsically Decorated with Nanopapillae for Multifunctional Printed Flexible Electronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20272-20280.	4.0	25
21	Printable Smart Pattern for Multifunctional Energy-Management E-Textile. Matter, 2019, 1, 168-179.	5.0	172
22	Selfâ∈Healable Multifunctional Electronic Tattoos Based on Silk and Graphene. Advanced Functional Materials, 2019, 29, 1808695.	7.8	236
23	Sweat-Driven Silk-yarn Switches Enabled by Highly Aligned Gaps for Air-conditioning Textiles. Advanced Fiber Materials, 2019, 1, 197-204.	7.9	33
24	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	11.1	779
25	Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Research, 2018, 11, 2347-2356.	5.8	70
26	Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics. Nano Letters, 2018, 18, 7085-7091.	4.5	98
27	Wearable Electronics: Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater (Adv. Electron. Mater. 9/2017). Advanced Electronic Materials, 2017, 3, .	2.6	0
28	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	3.5	170
29	Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater. Advanced Electronic Materials, 2017, 3, 1700193.	2.6	133
30	Protection effect of nicotinamide on cardiomyoblast hypoxia/re-oxygenation injury: study of cellular mitochondrial metabolism. Molecular BioSystems, 2016, 12, 2257-2264.	2.9	13
31	Pathogenesis of neural tube defects: the story beyond methylation or one-carbon unit metabolism. Metabolomics, 2012, 8, 919-929.	1.4	5