Thomas Vanhove

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/341009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of tacrolimus, three mono-demethylated metabolites and a M1 tautomer in human whole blood by liquid chromatography – tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2021, 205, 114296.	1.4	3
2	In vivo <scp>CYP</scp> 3A4 activity does not predict the magnitude of interaction between itraconazole and tacrolimus from an extended release formulation. Basic and Clinical Pharmacology and Toxicology, 2019, 124, 50-55.	1.2	4
3	Histological characteristics of Acute Tubular Injury during Delayed Graft Function predict renal function after renal transplantation. Physiological Reports, 2019, 7, e14000.	0.7	26
4	Relationship between In Vivo CYP3A4 Activity, CYP3A5 Genotype, and Systemic Tacrolimus Metabolite/Parent Drug Ratio in Renal Transplant Recipients and Healthy Volunteers. Drug Metabolism and Disposition, 2018, 46, 1507-1513.	1.7	17
5	Kuypers and Vanhove reply to †Was 4βâ€hydroxycholesterol ever going to be a useful marker of <scp>CYP3A4</scp> activity?' by Neuhoff and Tucker. British Journal of Clinical Pharmacology, 2018, 84, 1622-1623.	1.1	3
6	Effect of ABCB1 diplotype on tacrolimus disposition in renal recipients depends on CYP3A5 and CYP3A4 genotype. Pharmacogenomics Journal, 2017, 17, 556-562.	0.9	16
7	Determinants of the Magnitude of Interaction Between Tacrolimus and Voriconazole/Posaconazole in Solid Organ Recipients. American Journal of Transplantation, 2017, 17, 2372-2380.	2.6	60
8	Response to: †Bodyweightâ€adjustments introduce significant correlations between CYP3A metrics and tacrolimus clearance'. British Journal of Clinical Pharmacology, 2017, 83, 1353-1356.	1.1	3
9	Predictive Modeling of Tacrolimus Dose Requirements: "All That Is Gold Does Not Glitter― American Journal of Transplantation, 2017, 17, 1144-1145.	2.6	1
10	A noninferiority trial comparing a heparin-grafted membrane plus citrate-containing dialysate versus regional citrate anticoagulation: results of the CiTED study. Nephrology Dialysis Transplantation, 2017, 32, 707-714.	0.4	20
11	Tubulointerstitial expression and urinary excretion of connective tissue growth factor 3 months after renal transplantation predict interstitial fibrosis and tubular atrophy at 5 years in a retrospective cohort analysis. Transplant International, 2017, 30, 695-705.	0.8	10
12	Fexofenadine, a Putative <i>In Vivo</i> Pâ€glycoprotein Probe, Fails to Predict Clearance of the Substrate Tacrolimus in Renal Recipients. Clinical Pharmacology and Therapeutics, 2017, 102, 989-996.	2.3	10
13	The Effect of Immunosuppression on Airway Integrity. Transplantation, 2017, 101, 2855-2861.	0.5	5
14	Effect of the Direct Oral Anticoagulants Rivaroxaban and Apixaban on the Disposition of Calcineurin Inhibitors in Transplant Recipients. Therapeutic Drug Monitoring, 2017, 39, 77-82.	1.0	35
15	Kidney Fibrosis. Transplantation, 2017, 101, 713-726.	0.5	67
16	Pretransplant 4βâ€hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation. British Journal of Clinical Pharmacology, 2017, 83, 2406-2415.	1.1	13
17	Drug–drug interactions between immunosuppressants and antidiabetic drugs in the treatment of post-transplant diabetes mellitus. Transplantation Reviews, 2017, 31, 69-77.	1.2	37
18	High Intrapatient Variability of Tacrolimus Concentrations Predicts Accelerated Progression of Chronic Histologic Lesions in Renal Recipients. American Journal of Transplantation, 2016, 16, 2954-2963.	2.6	102

THOMAS VANHOVE

#	Article	IF	CITATIONS
19	Comparative performance of oral midazolam clearance and plasma 4βâ€hydroxycholesterol to explain interindividual variability in tacrolimus clearance. British Journal of Clinical Pharmacology, 2016, 82, 1539-1549.	1.1	24
20	Clinical determinants of calcineurin inhibitor disposition: a mechanistic review. Drug Metabolism Reviews, 2016, 48, 88-112.	1.5	119
21	Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit. British Journal of Clinical Pharmacology, 2015, 80, 548-559.	1.1	48
22	Response to â€~Tacrolimus pharmacokinetics after kidney transplantation – Influence of changes in haematocrit and steroid dose'. British Journal of Clinical Pharmacology, 2015, 80, 1473-1474.	1.1	1
23	Reasons for dose reduction of mycophenolate mofetil during the first year after renal transplantation and its impact on graft outcome. Transplant International, 2013, 26, 813-821.	0.8	51
24	The Use of Lymph Vessel Markers to Predict Endometrial Cancer Outcome. International Journal of Gynecological Cancer, 2010, 20, 363-367.	1.2	13