J L Mantari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3409704/publications.pdf

Version: 2024-02-01

233421 257450 2,178 45 66 24 citations h-index g-index papers 66 66 66 793 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of refined one-dimensional finite element models using a nodal kinematics optimization method. Mechanics of Advanced Materials and Structures, 2023, 30, 1962-1974.	2.6	O
2	Thermal bending response of functionally graded magneto-electric–elastic shell employing non-polynomial model. Mechanics of Advanced Materials and Structures, 2023, 30, 2882-2898.	2.6	4
3	A contemporary approach to the MSE paradigm powered by Artificial Intelligence from a review focused on Polymer Matrix Composites. Mechanics of Advanced Materials and Structures, 2022, 29, 3076-3096.	2.6	9
4	3D semi-analytical solution of hygro-thermo-mechanical multilayered doubly-curved shells. Engineering Structures, 2022, 256, 113916.	5. 3	3
5	Computational and experimental analysis of a Glaucoma flat drainage device. Journal of Biomechanics, 2021, 118, 110234.	2.1	1
6	A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels. Composite Structures, 2021, 265, 113710.	5.8	3
7	Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells. Engineering Structures, 2021, 238, 112158.	5.3	10
8	Compact and unified elasto-plastic formulation to study isotropic plates. International Journal of Non-Linear Mechanics, 2020, 118, 103253.	2.6	2
9	Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells. Engineering Structures, 2020, 203, 109678.	5.3	4
10	Computational semi-analytical method for the 3D elasticity bending solution of laminated composite and sandwich doubly-curved shells. Engineering Structures, 2020, 221, 110938.	5 . 3	15
11	3D elasticity numerical solution for the static behavior of FGM shells. Engineering Structures, 2020, 208, 110159.	5.3	24
12	Exact solution of thermo-mechanical analysis of laminated composite and sandwich doubly-curved shell. Composite Structures, 2020, 245, 112323.	5.8	18
13	New methodology for the construction of best theory diagrams using neural networks and multi-objective genetic algorithm. Composites Part B: Engineering, 2019, 176, 107126.	12.0	5
14	Best shear deformation theories based on polynomial expansions for sandwich beams. Engineering Structures, 2019, 190, 422-434.	5.3	4
15	Vibrational behavior of isotropic plate structures in contact with a bounded fluid via unified formulation. Chinese Journal of Aeronautics, 2019, 32, 921-937.	5.3	12
16	Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites. Chinese Journal of Aeronautics, 2019, 32, 906-920.	5.3	2
17	An assessment of fluid compressibility influence on the natural frequencies of a submerged plate via unified formulation. Ocean Engineering, 2018, 147, 414-430.	4.3	5
18	Discrepancy on the free vibration of laminated composite plates coupled to a compressible and incompressible fluid domain. Ocean Engineering, 2018, 167, 267-281.	4.3	12

#	Article	IF	Citations
19	Free vibration of thick isotropic and laminated beams with arbitrary boundary conditions via unified formulation and Ritz method. Applied Mathematical Modelling, 2018, 61, 693-708.	4.2	8
20	An axiomatic/asymptotic evaluation of the best theories for free vibration of laminated and sandwich shells using non-polynomial functions. Engineering Structures, 2018, 172, 1011-1024.	5.3	10
21	Hygro-thermo-mechanical behavior of classical composites. Ocean Engineering, 2017, 137, 224-240.	4.3	10
22	A boundary-discontinuous-displacement based Fourier analysis of thick laminated beams via a robust 1D-CUF model. International Journal of Solids and Structures, 2017, 118-119, 109-118.	2.7	8
23	An axiomatic/asymptotic evaluation of best theories for isotropic metallic and functionally graded plates employing non-polynomic functions. Aerospace Science and Technology, 2017, 68, 179-192.	4.8	9
24	Elasto-plastic vibrational analysis of tapered bars under uniform axial loading considering shear deformation and rotary inertia. International Journal of Non-Linear Mechanics, 2017, 95, 103-116.	2.6	1
25	Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads. Composites Part B: Engineering, 2017, 124, 218-241.	12.0	43
26	Boundary discontinuous Fourier analysis of thick beams with clamped and simply supported edges via CUF. Chinese Journal of Aeronautics, 2017, 30, 1708-1718.	5.3	8
27	N-objective genetic algorithm to obtain accurate equivalent single layer models with layerwise capabilities for challenging sandwich plates. Aerospace Science and Technology, 2017, 70, 170-188.	4.8	10
28	Hygro-thermo-mechanical behavior of classical composites using a new trigonometrical shear strain shape function and a compact layerwise approach. Composite Structures, 2017, 160, 378-391.	5.8	11
29	A computational methodology to calculate the required power in disc crushers. Journal of Computational Design and Engineering, 2017, 4, 14-20.	3.1	5
30	Best Theory Diagrams for cross-ply composite plates using polynomial, trigonometric and exponential thickness expansions. Composite Structures, 2017, 161, 362-383.	5.8	10
31	Laminated composite plates in contact with a bounded fluid: Free vibration analysis via unified formulation. Composite Structures, 2017, 162, 374-387.	5.8	23
32	Multiobjective Best Theory Diagrams for cross-ply composite plates employing polynomial, zig-zag, trigonometric and exponential thickness expansions. Composite Structures, 2017, 176, 860-876.	5.8	12
33	A Unified Formulation for Laminated Composite and Sandwich Plates Subject to Thermal Load Using Various Plate Theories. International Journal of Applied Mechanics, 2016, 08, 1650087.	2.2	18
34	Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions. Composite Structures, 2016, 152, 306-315.	5.8	61
35	General recommendations to develop 4-unknowns quasi-3D HSDTs to study FGMs. Aerospace Science and Technology, 2016, 58, 559-570.	4.8	15
36	Buckling, free vibration and bending analysis of functionally graded sandwich plates based on an optimized hyperbolic unified formulation. International Journal of Mechanical Sciences, 2016, 119, 170-186.	6.7	47

#	Article	IF	CITATIONS
37	An original FSDT to study advanced composites on elastic foundation. Thin-Walled Structures, 2016, 107, 80-89.	5.3	21
38	A unified quasi-3D HSDT for the bending analysis of laminated beams. Aerospace Science and Technology, 2016, 54, 267-275.	4.8	23
39	Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates. Journal of Thermal Stresses, 2016, 39, 835-853.	2.0	19
40	Hermite–Lagrangian finite element formulation to study functionally graded sandwich beams. Composite Structures, 2016, 140, 567-581.	5.8	35
41	Laminated composite plates subject to thermal load using trigonometrical theory based on Carrera Unified Formulation. Composite Structures, 2016, 143, 324-335.	5.8	30
42	A simple polynomial quasi-3D HSDT with four unknowns to study FGPs. Reddy's HSDT assessment. Composite Structures, 2016, 137, 114-120.	5.8	9
43	Five-unknowns generalized hybrid-type quasi-3D HSDT for advanced composite plates. Applied Mathematical Modelling, 2015, 39, 5598-5615.	4.2	19
44	A refined FSDT for the static analysis of functionally graded sandwich plates. Thin-Walled Structures, 2015, 90, 150-158.	5.3	51
45	Thermoelastic behavior of advanced composite sandwich plates by using a new 6 unknown quasi-3D hybrid type HSDT. Composite Structures, 2015, 126, 132-144.	5.8	27
46	A quasi-3D tangential shear deformation theory with four unknowns for functionally graded plates. Acta Mechanica, 2015, 226, 625-642.	2.1	18
47	Free vibration of single and sandwich laminated composite plates by using a simplified FSDT. Composite Structures, 2015, 132, 952-959.	5. 8	53
48	A refined theory with stretching effect for the dynamics analysis of advanced composites on elastic foundation. Mechanics of Materials, 2015, 86, 31-43.	3.2	17
49	Free vibration of advanced composite plates resting on elastic foundations based on refined non-polynomial theory. Meccanica, 2015, 50, 2369-2390.	2.0	5
50	A simple and accurate generalized shear deformation theory for beams. Composite Structures, 2015, 134, 593-601.	5.8	30
51	Refined and generalized hybrid type quasi-3D shear deformation theory for the bending analysis of functionally graded shells. Composites Part B: Engineering, 2015, 83, 142-152.	12.0	44
52	Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns. Composites Part B: Engineering, 2015, 69, 317-334.	12.0	48
53	A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates. Composite Structures, 2014, 107, 396-405.	5.8	53
54	Four-unknown quasi-3D shear deformation theory for advanced composite plates. Composite Structures, 2014, 109, 231-239.	5.8	42

#	Article	IF	CITATIONS
55	Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT. Composite Structures, 2014, 118, 455-471.	5.8	31
56	Static response of advanced composite plates by a new non-polynomial higher-order shear deformation theory. International Journal of Mechanical Sciences, 2014, 78, 60-71.	6.7	25
57	Generalized layerwise HSDT and finite element formulation for symmetric laminated and sandwich composite plates. Composite Structures, 2013, 105, 319-331.	5.8	47
58	Finite element formulation of a generalized higher order shear deformation theory for advanced composite plates. Composite Structures, 2013, 96, 545-553.	5.8	60
59	Bending response of functionally graded plates by using a new higher order shear deformation theory. Composite Structures, 2012, 94, 714-723.	5.8	135
60	Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory. Composite Structures, 2012, 94, 1991-2000.	5 . 8	102
61	Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates. Composite Structures, 2012, 94, 2561-2575.	5.8	97
62	Analysis of isotropic and multilayered plates and shells by using a generalized higher-order shear deformation theory. Composite Structures, 2012, 94, 2640-2656.	5.8	86
63	A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. International Journal of Solids and Structures, 2012, 49, 43-53.	2.7	290
64	Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory. European Journal of Mechanics, A/Solids, 2012, 36, 163-172.	3.7	65
65	Intact stability of fishing vessels under combined action of fishing gear, beam waves and wind. Ocean Engineering, 2011, 38, 1989-1999.	4.3	16
66	Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory. Composite Structures, 2011, 94, 37-49.	5.8	238