Stephen p Kidd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3409654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of wood biochar dosage and re-use on high-solids anaerobic digestion of chicken litter. Biomass and Bioenergy, 2021, 144, 105872.	5.7	20
2	A single nucleotide polymorphism in an IgA1 protease gene determines <i>Streptococcus pneumoniae</i> adaptation to the middle ear during otitis media. Pathogens and Disease, 2021, 79, .	2.0	5
3	Facile Multistep Synthesis of ZnO-Coated β-NaYF ₄ :Yb/Tm Upconversion Nanoparticles as an Antimicrobial Photodynamic Therapy for Persistent <i>Staphylococcus aureus</i> Small Colony Variants. ACS Applied Bio Materials, 2021, 4, 6125-6136.	4.6	8
4	Comparative antibacterial activity of 2D materials coated on porous-titania. Journal of Materials Chemistry B, 2021, 9, 6412-6424.	5.8	10
5	Evidence for osteocyte-mediated bone-matrix degradation associated with periprosthetic joint infection (PJI). , 2021, 42, 264-280.		14
6	A Human Osteocyte Cell Line Model for Studying Staphylococcus aureus Persistence in Osteomyelitis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 781022.	3.9	11
7	Effect of total solids content on anaerobic digestion of poultry litter with biochar. Journal of Environmental Management, 2020, 255, 109744.	7.8	47
8	Effects of biochar parent material and microbial pre-loading in biochar-amended high-solids anaerobic digestion. Bioresource Technology, 2020, 298, 122457.	9.6	57
9	Insights into the antimicrobial mechanism of Ag and I incorporated ZnO nanoparticle derivatives under visible light. Materials Science and Engineering C, 2020, 107, 110220.	7.3	21
10	Novel Research Models for Staphylococcus aureus Small Colony Variants (SCV) Development: Co-pathogenesis and Growth Rate. Frontiers in Microbiology, 2020, 11, 321.	3.5	27
11	Rifampicin-Loaded Mesoporous Silica Nanoparticles for the Treatment of Intracellular Infections. Antibiotics, 2019, 8, 39.	3.7	45
12	ASM2019 report. Microbiology Australia, 2019, 40, 144.	0.4	0
13	Novel Insights into Staphylococcus aureus Deep Bone Infections: the Involvement of Osteocytes. MBio, 2018, 9, .	4.1	114
14	Association between Extracellular Material and Biofilm Formation in Response to Sodium Hypochlorite by Clinical Isolates of Enterococcus faecalis. Journal of Endodontics, 2018, 44, 269-273.	3.1	6
15	Biochar Addition in High-Solids Anaerobic Digestion of Poultry Litter. , 2018, , .		3
16	Specific growth conditions induce a Streptococcus pneumoniae non-mucoidal, small colony variant and determine the outcome of its co-culture with Haemophilus influenzae. Pathogens and Disease, 2018, 76, .	2.0	8
17	Antibiotic tolerance and the alternative lifestyles of <i>Staphylococcus aureus</i> . Essays in Biochemistry, 2017, 61, 71-79.	4.7	50
18	D-amino acids reduce Enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment. PLoS ONE, 2017, 12, e0170670.	2.5	50

Stephen p Kidd

#	Article	IF	CITATIONS
19	Interactions and Mechanisms of Respiratory Tract Biofilms Involving Streptococcus Pneumoniae and Nontypeable Haemophilus Influenzae. , 2016, , .		2
20	Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain. Frontiers in Cellular and Infection Microbiology, 2016, 6, 187.	3.9	26
21	Haemophilus influenzae strains possess variations in the global transcriptional profile in response to oxygen levels and this influences sensitivity to environmental stresses. Research in Microbiology, 2016, 167, 13-19.	2.1	2
22	A discrete role for FNR in the transcriptional response to moderate changes in oxygen by Haemophilus influenzae Rd KW20. Research in Microbiology, 2016, 167, 103-113.	2.1	1
23	The induction of Staphylococcus aureus biofilm formation or Small Colony Variants is a strain-specific response to host-generated chemical stresses. Microbes and Infection, 2015, 17, 77-82.	1.9	39
24	Prolonged Growth of a Clinical Staphylococcus aureus Strain Selects for a Stable Small-Colony-Variant Cell Type. Infection and Immunity, 2015, 83, 470-481.	2.2	36
25	A new insight into the role of intracellular nickel levels for the stress response, surface properties and twitching motility by Haemophilus influenzae. Metallomics, 2015, 7, 650-661.	2.4	3
26	A full genomic characterization of the development of a stable Small Colony Variant cell-type by a clinical Staphylococcus aureus strain. Infection, Genetics and Evolution, 2015, 36, 345-355.	2.3	33
27	The outcome of H. influenzae and S. pneumoniae inter-species interactions depends on pH, nutrient availability and growth phase. International Journal of Medical Microbiology, 2015, 305, 881-892.	3.6	20
28	There is a specific response to pH by isolates of Haemophilus influenzae and this has a direct influence on biofilm formation. BMC Microbiology, 2014, 14, 47.	3.3	11
29	<i>Haemophilus influenzae</i> and <i>Streptococcus pneumoniae</i> living together in a biofilm. Pathogens and Disease, 2013, 69, 114-126.	2.0	71
30	The concentration of intracellular nickel in Haemophilus influenzae is linked to its surface properties and cell–cell aggregation and biofilm formation. International Journal of Medical Microbiology, 2013, 303, 150-157.	3.6	7
31	Phenotypic Characterization of a <i>copA</i> Mutant of Neisseria gonorrhoeae Identifies a Link between Copper and Nitrosative Stress. Infection and Immunity, 2012, 80, 1065-1071.	2.2	43
32	A glutathione-based system for defense against carbonyl stress in Haemophilus influenzae. BMC Microbiology, 2012, 12, 159.	3.3	9
33	A novel nickel responsive MerR-like regulator, NimR, from Haemophilus influenzae. Metallomics, 2011, 3, 1009.	2.4	14
34	Novel Bacterial MerR-Like Regulators. Advances in Microbial Physiology, 2011, 58, 1-22.	2.4	24
35	Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae. Journal of Proteomics, 2010, 73, 899-916.	2.4	38
36	Regulation of the 18 kDa heat shock protein in <i>Mycobacterium ulcerans</i> : an alphaâ€crystallin orthologue that promotes biofilm formation. Molecular Microbiology, 2010, 78, 1216-1231.	2.5	20

Stephen p Kidd

#	Article	IF	CITATIONS
37	The MerR/NmlR Family Transcription Factor of <i>Streptococcus pneumoniae</i> Responds to Carbonyl Stress and Modulates Hydrogen Peroxide Production. Journal of Bacteriology, 2010, 192, 4063-4066.	2.2	20
38	Thioredoxin Reductase Is Essential for Protection ofNeisseria gonorrhoeaeagainst Killing by Nitric Oxide and for Bacterial Growth during Interaction with Cervical Epithelial Cells. Journal of Infectious Diseases, 2009, 199, 227-235.	4.0	50
39	Esterase D Is Essential for Protection of <i>Neisseria gonorrhoeae</i> against Nitrosative Stress and for Bacterial Growth during Interaction with Cervical Epithelial Cells. Journal of Infectious Diseases, 2009, 200, 273-278.	4.0	20
40	Glutathione-Dependent Alcohol Dehydrogenase AdhC Is Required for Defense against Nitrosative Stress in Haemophilus influenzae. Infection and Immunity, 2007, 75, 4506-4513.	2.2	31
41	A Pneumococcal MerRâ€Like Regulator and <i>S</i> â€nitrosoglutathione Reductase Are Required for Systemic Virulence. Journal of Infectious Diseases, 2007, 196, 1820-1826.	4.0	47
42	Evidence for Distinctive Mechanisms of S -Nitrosoglutathione Metabolism by AdhC in Two Closely Related Species, Neisseria gonorrhoeae and Neisseria meningitidis. Infection and Immunity, 2007, 75, 1534-1536.	2.2	15
43	Secreted enzymes of Aeromonas. FEMS Microbiology Letters, 2006, 152, 1-10.	1.8	183
44	PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Molecular Microbiology, 2006, 60, 401-416.	2.5	69
45	Defenses against Oxidative Stress in Neisseria gonorrhoeae : a System Tailored for a Challenging Environment. Microbiology and Molecular Biology Reviews, 2006, 70, 344-361.	6.6	128
46	NmlR ofNeisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR family. Molecular Microbiology, 2005, 57, 1676-1689.	2.5	47
47	Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 2005, 49, 167-178.	3.0	124
48	Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype. Biochemical and Biophysical Research Communications, 2005, 328, 1205-1210.	2.1	35
49	The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 2003, 27, 145-163.	8.6	628
50	ZccR—a MerR-like regulator from Bordetella pertussis which responds to zinc, cadmium, and cobalt. Biochemical and Biophysical Research Communications, 2003, 302, 697-702.	2.1	11
51	Mercury Resistance Determinants Related to Tn 21 , Tn 1696 , and Tn 5053 in Enterobacteria from the Preantibiotic Era. Antimicrobial Agents and Chemotherapy, 2003, 47, 1115-1119.	3.2	47
52	The cloning and characterization of a second alpha-amylase of A. hydrophila JMP636. Journal of Applied Microbiology, 2002, 92, 289-296.	3.1	7
53	The identification of the transcriptional regulator CRP in Aeromonas hydrophila JMP636 and its involvement in amylase production and the 'acidic toxicity' effect. Journal of Applied Microbiology, 2002, 93, 787-793.	3.1	5
54	Secreted enzymes of Aeromonas. FEMS Microbiology Letters, 1997, 152, 1-10.	1.8	7