Deping Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3408869/publications.pdf

Version: 2024-02-01

94269 4,920 90 37 citations h-index papers

g-index 93 93 93 5511 all docs docs citations times ranked citing authors

98622

67

#	Article	IF	CITATIONS
1	Facile Fabrication of Nitrogenâ€Doped Porous Carbon as Superior Anode Material for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1802386.	10.2	393
2	Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte. Journal of Power Sources, 2018, 378, 66-72.	4.0	299
3	High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydrate Polymers, 2017, 155, 345-353.	5.1	251
4	Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. ACS Nano, 2018, 12, 12932-12940.	7. 3	223
5	High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification. Carbon, 2018, 130, 487-494.	5.4	144
6	Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application. Chemical Engineering Journal, 2018, 347, 12-18.	6.6	143
7	Foldable potassium-ion batteries enabled by free-standing and flexible SnS ₂ @C nanofibers. Energy and Environmental Science, 2021, 14, 424-436.	15.6	142
8	A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chemical Engineering Journal, 2018, 345, 536-544.	6.6	136
9	Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18610-18618.	4.0	123
10	Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Materials, 2019, 23, 367-374.	9.5	120
11	Structural Engineering of SnS ₂ Encapsulated in Carbon Nanoboxes for Highâ€Performance Sodium/Potassiumâ€ion Batteries Anodes. Small, 2020, 16, e2005023.	5.2	120
12	Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chemical Engineering Journal, 2018, 334, 184-190.	6.6	113
13	Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. Carbon, 2018, 138, 264-270.	5.4	110
14	Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon, 2019, 155, 601-610.	5.4	110
15	Hierarchical layer-by-layer porous FeCo ₂ S ₄ @Ni(OH) ₂ arrays for all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 20480-20490.	5.2	102
16	Surfaceâ€Confined SnS ₂ @C@rGO as Highâ€Performance Anode Materials for Sodium―and Potassium―on Batteries. ChemSusChem, 2019, 12, 2689-2700.	3.6	98
17	Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy, 2020, 72, 104657.	8.2	93
18	Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. Journal of Power Sources, 2018, 400, 212-217.	4.0	88

#	Article	IF	CITATIONS
19	Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for supercapacitors and sodium-ion batteries. Journal of Power Sources, 2019, 414, 308-316.	4.0	87
20	High efficient adsorption and storage of iodine on S, N co-doped graphene aerogel. Journal of Hazardous Materials, 2019, 373, 705-715.	6.5	73
21	Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes. Nano Research, 2017, 10, 4274-4283.	5.8	72
22	Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 17386-17399.	5.2	72
23	Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon, 2020, 158, 456-464.	5.4	72
24	Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge. Journal of Power Sources, 2018, 386, 77-84.	4.0	65
25	High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 1574-1581.	5.2	65
26	Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. Journal of Power Sources, 2019, 413, 302-309.	4.0	63
27	Surfactant-dependent flower- and grass-like Zn _{0.76} Co _{0.24} S/Co ₃ S ₄ for high-performance all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22830-22839.	5.2	60
28	Effective synthetic strategy for Zn _{0.76} Co _{0.24} S encapsulated in stabilized N-doped carbon nanoarchitecture towards ultra-long-life hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 14670-14680.	5.2	59
29	Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. Journal of Materials Chemistry A, 2020, 8, 22874-22885.	5.2	58
30	Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel. Chemosphere, 2018, 191, 389-399.	4.2	54
31	Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithiumâ€ion Batteries. Advanced Materials Interfaces, 2019, 6, 1901187.	1.9	54
32	Sandwichâ€Like FeCl ₃ @C as Highâ€Performance Anode Materials for Potassiumâ€lon Batteries. Advanced Materials Interfaces, 2018, 5, 1800606.	1.9	53
33	Facilely tunable core-shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode. Electrochimica Acta, 2020, 342, 136068.	2.6	52
34	Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. Journal of Power Sources, 2018, 392, 116-122.	4.0	46
35	In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 15219-15227.	3.2	43
36	Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chemical Engineering Journal, 2022, 429, 132343.	6.6	42

#	Article	IF	CITATIONS
37	Potassium pre-inserted K1.04Mn8O16 as cathode materials for aqueous Li-ion and Na-ion hybrid capacitors. Journal of Energy Chemistry, 2020, 46, 53-61.	7.1	40
38	Cold-pressing PEO/LAGP composite electrolyte for integrated all-solid-state lithium metal battery. Solid State Ionics, 2020, 345, 115156.	1.3	40
39	Reduced graphene oxide decorated Pt activated SnO2 nanoparticles for enhancing methanol sensing performance. Journal of Alloys and Compounds, 2018, 762, 8-15.	2.8	39
40	Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. Journal of Electroanalytical Chemistry, 2019, 842, 74-81.	1.9	38
41	Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Research, 2021, 14, 4502-4511.	5.8	36
42	Guest ions pre-intercalation strategy of manganese-oxides for supercapacitor and battery applications. Journal of Energy Chemistry, 2021, 60, 480-493.	7.1	36
43	Reduced graphene oxide wrapped Au@ZnO core-shell structure for highly selective triethylamine gas sensing application at a low temperature. Sensors and Actuators A: Physical, 2018, 283, 128-133.	2.0	34
44	Safe and Stable Lithium Metal Batteries Enabled by an Amide-Based Electrolyte. Nano-Micro Letters, 2022, 14, 44.	14.4	34
45	Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. Journal of Power Sources, 2019, 416, 141-147.	4.0	31
46	Lightweight graphene oxide-based sponges with high compressibility and durability for dye adsorption. Carbon, 2020, 160, 54-63.	5.4	30
47	Stable lithium metal anode enabled by an artificial multi-phase composite protective film. Journal of Power Sources, 2020, 448, 227547.	4.0	30
48	Mesoporous Mn2O3 rods as a highly efficient catalyst for Li-O2 battery. Journal of Power Sources, 2019, 435, 226833.	4.0	29
49	Carbon aerogel reinforced PDMS nanocomposites with controllable and hierarchical microstructures for multifunctional wearable devices. Carbon, 2021, 171, 758-767.	5.4	29
50	Ag doped urchin-like $\hat{l}\pm$ -MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Research, 2020, 13, 2356-2364.	5.8	27
51	Facile construction of a hybrid artificial protective layer for stable lithium metal anode. Chemical Engineering Journal, 2020, 391, 123542.	6.6	25
52	Rational construction of ternary ZnNiP arrayed structures derived from 2D MOFs for advanced hybrid supercapacitors and Zn batteries. Electrochimica Acta, 2021, 387, 138548.	2.6	25
53	Enhanced Air and Electrochemical Stability of Li ₇ P ₃ S ₁₁ –Based Solid Electrolytes Enabled by Aliovalent Substitution of SnO ₂ . Advanced Materials Interfaces, 2021, 8, 2100368.	1.9	24
54	Enhanced plant antioxidant capacity and biodegradation of phenol by immobilizing peroxidase on amphoteric nitrogen-doped carbon dots. Catalysis Communications, 2020, 134, 105847.	1.6	22

#	Article	IF	CITATIONS
55	Impacts of surface chemistry of functional carbon nanodots on the plant growth. Ecotoxicology and Environmental Safety, 2020, 206, 111220.	2.9	22
56	Bifunctional In Situ Polymerized Interface for Stable LAGPâ€Based Lithium Metal Batteries. Advanced Materials Interfaces, 2021, 8, 2100072.	1.9	22
57	Focusing on the Subsequent Coulombic Efficiencies of SiO _{<i>x</i>xxxi>xxi>xxi>xxi>xi>xi>xi>xi>xi>xi>xi>xi>xi>xi>xi>xi}	4.0	22
58	High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium–Oxygen Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30793-30800.	4.0	21
59	Boron-doped graphene coated Au@SnO2 for high-performance triethylamine gas detection. Materials Chemistry and Physics, 2020, 239, 121961.	2.0	21
60	Enhanced bioaccumulation efficiency and tolerance for Cd (âi) in Arabidopsis thaliana by amphoteric nitrogen-doped carbon dots. Ecotoxicology and Environmental Safety, 2020, 190, 110108.	2.9	21
61	Enhanced Cycling Performance of Li–O ₂ Battery by Using a Li ₃ PO ₄ -Protected Lithium Anode in DMSO-Based Electrolyte. ACS Applied Energy Materials, 2018, 1, 5511-5517.	2.5	20
62	Green and facile synthesis of nanosized polythiophene as an organic anode for high-performance potassium-ion battery. Functional Materials Letters, 2018, 11, 1840003.	0.7	20
63	A novel coral-like garnet for high-performance PEO-based all solid-state batteries. Science China Materials, 2022, 65, 364-372.	3.5	20
64	Reduced graphene oxide/SnO2@Au heterostructure for enhanced ammonia gas sensing. Chemical Physics Letters, 2019, 737, 136829.	1.2	19
65	Phosphorous-doped bimetallic sulfides embedded in heteroatom-doped carbon nanoarrays for flexible all-solid-state supercapacitors. Science China Materials, 2021, 64, 2439-2453.	3.5	19
66	Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 276, 325-332.	2.6	18
67	Li ₂ CO ₃ : Insights into Its Blocking Effect on Li-lon Transfer in Garnet Composite Electrolytes. ACS Applied Energy Materials, 2022, 5, 2853-2861.	2.5	17
68	Functional carbon nanodots improve soil quality and tomato tolerance in saline-alkali soils. Science of the Total Environment, 2022, 830, 154817.	3.9	17
69	Effects of functional carbon nanodots on water hyacinth response to Cd/Pb stress: Implication for phytoremediation. Journal of Environmental Management, 2021, 299, 113624.	3.8	15
70	Carbon Nanotubesâ€Based Electrocatalysts: Structural Regulation, Support Effect, and Synchrotronâ€Based Characterization. Advanced Functional Materials, 2022, 32, 2106684.	7.8	14
71	In situ construction of a flexible interlayer for durable solid-state lithium metal batteries. Carbon, 2022, 187, 13-21.	5.4	13
72	Bio-inspired multiple-stimuli responsive porous materials with switchable flexibility and programmable shape morphing capability. Carbon, 2020, 161, 702-711.	5.4	12

#	Article	IF	Citations
73	Synergistic double-shell coating of graphene and Li4SiO4 on silicon for high performance lithium-ion battery application. Diamond and Related Materials, 2018, 88, 60-66.	1.8	11
74	Lewis Acidity Organoboronâ€Modified Liâ€Rich Cathode Materials for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2021, 8, 2002113.	1.9	11
75	Flexible rGO @ Nonwoven Fabrics' Membranes Guide Stable Lithium Metal Anodes for Lithium–Oxygen Batteries. ACS Applied Energy Materials, 2020, 3, 7944-7951.	2.5	9
76	Enhanced Electrochemical Performance of Li _{1.2} [Mn _{0.54} Co _{0.13} Ni _{0.13}]O ₂ Enabled by Synergistic Effect of Li _{1.5} Na _{0.5} SiO ₃ Modification. Advanced Materials Interfaces, 2020, 7, 2000378.	1.9	9
77	Reversible LiOH chemistry in Li-O2 batteries with free-standing Ag/l̂-MnO2 nanoflower cathode. Science China Materials, 2022, 65, 1431-1442.	3.5	9
78	Interlayer Engineering of K _{<i>x</i>} MnO ₂ Enables Superior Alkali Metal Ion Storage for Advanced Hybrid Capacitors. ChemElectroChem, 2022, 9, .	1.7	9
79	Ag+ preintercalation enabling high performance AgxMnO2 cathode for aqueous Li-ion and Na-ion hybrid supercapacitors. Journal of Power Sources, 2021, 484, 229316.	4.0	8
80	Potassium Ions Regulated the Disproportionation of Silicon Monoxide Boosting Its Performance for Lithium-Ion Battery Anodes. Energy & Energy & 16201, 35, 16202-16211.	2.5	8
81	A high-energy, long cycle life aqueous hybrid supercapacitor enabled by efficient battery electrode and widened potential window. Journal of Alloys and Compounds, 2021, 877, 160273.	2.8	8
82	Low-cost and facile synthesis of LAGP solid state electrolyte via a co-precipitation method. Applied Physics Letters, 2022, 121, 023904.	1.5	8
83	Trash to treasure: recycling discarded agarose gel for practical Na/K-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15026-15035.	5.2	7
84	Ballâ€Milling Strategy for Fast and Stable Potassiumâ€lon Storage in Antimonyâ€ <i>Carbon</i> Composite Anodes. ChemElectroChem, 2020, 7, 4587-4593.	1.7	6
85	Spontaneous In Situ Surface Alloying of Li-Zn Derived from a Novel Zn2+-Containing Solid Polymer Electrolyte for Steady Cycling of Li Metal Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 4282-4292.	3.2	4
86	One-step synthesis of hollow urchin-like Ag2Mn8O16 for long-life Li-O2 battery. Journal of Alloys and Compounds, 2022, 892, 162137.	2.8	4
87	Ag _{<i>x</i>} Mn ₈ O ₁₆ Cathode Enables High-Performance Aqueous Li-lon Hybrid Supercapacitors. Energy & Energy	2.5	3
88	Investigation of the gas-sensitive properties for methanol detection based on ZnO/SnO2 heterostructure. IOP Conference Series: Materials Science and Engineering, 2018, 392, 032016.	0.3	2
89	Biomimetics: from biological cells to battery cells. Science Bulletin, 2021, 66, 1054-1055.	4.3	2
90	Enhanced ions and electrons transmission enables high-performance KxMnO@C cathode for hybrid supercapacitors. Ceramics International, 2022, 48, 16516-16521.	2.3	2