
## **Detlef Weigel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3408040/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 2003, 301, 653-657.                                               | 6.0  | 4,667     |
| 2  | A gene expression map of Arabidopsis thaliana development. Nature Genetics, 2005, 37, 501-506.                                          | 9.4  | 2,293     |
| 3  | Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 2007, 39, 1033-1037.                      | 9.4  | 1,845     |
| 4  | Control of leaf morphogenesis by microRNAs. Nature, 2003, 425, 257-263.                                                                 | 13.7 | 1,676     |
| 5  | Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010, 465, 627-631.                       | 13.7 | 1,651     |
| 6  | LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992, 69, 843-859.                                                        | 13.5 | 1,442     |
| 7  | The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell, 2009, 138, 750-759.                     | 13.5 | 1,405     |
| 8  | Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 2005, 8, 517-527.                                         | 3.1  | 1,345     |
| 9  | Activation Tagging of the Floral Inducer FT. Science, 1999, 286, 1962-1965.                                                             | 6.0  | 1,311     |
| 10 | miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis<br>thaliana. Cell, 2009, 138, 738-749. | 13.5 | 1,255     |
| 11 | Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 2005, 309, 1056-1059.                  | 6.0  | 1,230     |
| 12 | Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell, 2006, 18, 1121-1133.                                 | 3.1  | 1,207     |
| 13 | Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20, 3186-3190.                                                            | 3.1  | 1,158     |
| 14 | 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 2016, 166, 481-491.                              | 13.5 | 1,107     |
| 15 | A Role for Flavin Monooxygenase-Like Enzymes in Auxin Biosynthesis. Science, 2001, 291, 306-309.                                        | 6.0  | 1,075     |
| 16 | Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. PLoS Biology, 2016,<br>14, e1002352.                    | 2.6  | 1,065     |
| 17 | The Rate and Molecular Spectrum of Spontaneous Mutations in <i>Arabidopsis thaliana</i> . Science, 2010, 327, 92-94.                    | 6.0  | 1,004     |
| 18 | The ABCs of floral homeotic genes. Cell, 1994, 78, 203-209.                                                                             | 13.5 | 999       |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease.<br>Nature Biotechnology, 2013, 31, 691-693.                                                               | 9.4  | 951       |
| 20 | Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 2011, 43, 956-963.                                                                                                   | 9.4  | 910       |
| 21 | Activation Tagging in Arabidopsis. Plant Physiology, 2000, 122, 1003-1014.                                                                                                                                  | 2.3  | 896       |
| 22 | The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 1987, 50, 649-657.                                                                    | 13.5 | 883       |
| 23 | The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.                                                                                       | 9.4  | 814       |
| 24 | Negative Regulation of Anthocyanin Biosynthesis in <i>Arabidopsis</i> by a miR156-Targeted SPL<br>Transcription Factor Â. Plant Cell, 2011, 23, 1512-1522.                                                  | 3.1  | 804       |
| 25 | Control of Jasmonate Biosynthesis and Senescence by miR319 Targets. PLoS Biology, 2008, 6, e230.                                                                                                            | 2.6  | 803       |
| 26 | A developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377, 495-500.                                                                                                      | 13.7 | 787       |
| 27 | The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell, 1989, 57, 645-658.                                                           | 13.5 | 739       |
| 28 | Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4.<br>Nature, 2008, 453, 391-395.                                                                               | 13.7 | 739       |
| 29 | High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017, 49, 1099-1106.                                                                  | 9.4  | 693       |
| 30 | Common Sequence Polymorphisms Shaping Genetic Diversity in <i>Arabidopsis thaliana</i> . Science, 2007, 317, 338-342.                                                                                       | 6.0  | 689       |
| 31 | Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature, 2011, 480, 245-249.                                                                                                         | 13.7 | 681       |
| 32 | A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis. Cell, 2001, 105, 793-803.                                                                                               | 13.5 | 650       |
| 33 | Gene silencing in plants using artificial microRNAs and other small RNAs. Plant Journal, 2008, 53, 674-690.                                                                                                 | 2.8  | 622       |
| 34 | Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell, 2016, 166, 492-505.                                                                                                   | 13.5 | 594       |
| 35 | Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux. Cell, 2007, 130, 1044-1056.                                                                                           | 13.5 | 590       |
| 36 | Genomewide SNP variation reveals relationships among landraces and modern varieties of rice.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>12273-12278. | 3.3  | 581       |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 2009, 6, 550-551.                                                                      | 9.0  | 558       |
| 38 | Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell, 2005, 17, 1424-1433.                                                                     | 3.1  | 528       |
| 39 | A genetic framework for floral patterning. Nature, 1998, 395, 561-566.                                                                                                                | 13.7 | 525       |
| 40 | Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific<br>Reports, 2017, 7, 482.                                                         | 1.6  | 525       |
| 41 | Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter. Plant Cell, 1998, 10, 791-800.                                                                        | 3.1  | 519       |
| 42 | Dual Effects of miR156-Targeted <i>SPL</i> Genes and <i>CYP78A5/KLUH</i> on Plastochron Length and<br>Organ Size in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2008, 20, 1231-1243. | 3.1  | 514       |
| 43 | Potent Induction of Arabidopsis thaliana Flowering by Elevated Growth Temperature. PLoS Genetics, 2006, 2, e106.                                                                      | 1.5  | 502       |
| 44 | Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics, 2007, 39, 1151-1155.                                                                               | 9.4  | 497       |
| 45 | Autoimmune Response as a Mechanism for a Dobzhansky-Muller-Type Incompatibility Syndrome in Plants. PLoS Biology, 2007, 5, e236.                                                      | 2.6  | 489       |
| 46 | Control of cell proliferation in <i>Arabidopsis thaliana</i> by microRNA miR396. Development (Cambridge), 2010, 137, 103-112.                                                         | 1.2  | 476       |
| 47 | Regulation of Auxin Response by the Protein Kinase PINOID. Cell, 2000, 100, 469-478.                                                                                                  | 13.5 | 464       |
| 48 | Integration of floral inductive signals in Arabidopsis. Nature, 2000, 404, 889-892.                                                                                                   | 13.7 | 458       |
| 49 | The fork head domain: A novel DNA binding motif of eukaryotic transcription factors?. Cell, 1990, 63, 455-456.                                                                        | 13.5 | 456       |
| 50 | A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO<br>Journal, 2006, 25, 605-614.                                                         | 3.5  | 445       |
| 51 | Sequencing of natural strains of <i>Arabidopsis thaliana</i> with short reads. Genome Research, 2008, 18, 2024-2033.                                                                  | 2.4  | 442       |
| 52 | Transcriptional Control of Gene Expression by MicroRNAs. Cell, 2010, 140, 111-122.                                                                                                    | 13.5 | 431       |
| 53 | The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics, 2002, 30, 190-193.                                                                                     | 9.4  | 425       |
| 54 | A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics, 2003, 33, 168-171.                                                                       | 9.4  | 420       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The 1001 Genomes Project for Arabidopsis thaliana. Genome Biology, 2009, 10, 107.                                                                                                                                                              | 13.9 | 420       |
| 56 | Dissection of floral induction pathways using global expression analysis. Development (Cambridge), 2003, 130, 6001-6012.                                                                                                                       | 1.2  | 418       |
| 57 | Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.                                                                         | 9.4  | 413       |
| 58 | Next-generation genetics in plants. Nature, 2008, 456, 720-723.                                                                                                                                                                                | 13.7 | 409       |
| 59 | Move on up, it's time for change—mobile signals controlling photoperiod-dependent flowering. Genes<br>and Development, 2007, 21, 2371-2384.                                                                                                    | 2.7  | 404       |
| 60 | Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Developmental Cell, 2007, 13, 115-125.                                                                                      | 3.1  | 399       |
| 61 | The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.                                                                                                                                 | 9.4  | 391       |
| 62 | Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nature Reviews<br>Genetics, 2007, 8, 382-393.                                                                                                                 | 7.7  | 382       |
| 63 | Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8795-8800. | 3.3  | 378       |
| 64 | Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature, 2010,<br>465, 632-636.                                                                                                                         | 13.7 | 378       |
| 65 | MiRNA Control of Vegetative Phase Change in Trees. PLoS Genetics, 2011, 7, e1002012.                                                                                                                                                           | 1.5  | 374       |
| 66 | The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics, 2013, 45, 831-835.                                                                                                                 | 9.4  | 374       |
| 67 | Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three<br>Kingdoms of Life. Cell Host and Microbe, 2014, 16, 364-375.                                                                                          | 5.1  | 367       |
| 68 | Activation of a Floral Homeotic Gene in Arabidopsis. Science, 1999, 285, 585-587.                                                                                                                                                              | 6.0  | 364       |
| 69 | Large-Scale Identification of Single-Feature Polymorphisms in Complex Genomes. Genome Research, 2003, 13, 513-523.                                                                                                                             | 2.4  | 345       |
| 70 | A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana. PLoS Genetics, 2010, 6, e1001031.                                                                                                       | 1.5  | 339       |
| 71 | The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife, 2013, 2, e00731.                                                                                                                        | 2.8  | 339       |
| 72 | The Scale of Population Structure in Arabidopsis thaliana. PLoS Genetics, 2010, 6, e1000843.                                                                                                                                                   | 1.5  | 338       |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | MicroRNA networks and developmental plasticity in plants. Trends in Plant Science, 2011, 16, 258-264.                                                                                                                                                          | 4.3  | 337       |
| 74 | Natural Variation in Arabidopsis: From Molecular Genetics to Ecological Genomics  Â. Plant Physiology,<br>2012, 158, 2-22.                                                                                                                                     | 2.3  | 330       |
| 75 | Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2655-62.                                                            | 3.3  | 325       |
| 76 | Highly specific gene silencing by artificial microRNAs in the unicellular alga <i>Chlamydomonas<br/>reinhardtii</i> . Plant Journal, 2009, 58, 165-174.                                                                                                        | 2.8  | 317       |
| 77 | Selective epigenetic control of retrotransposition in Arabidopsis. Nature, 2009, 461, 427-430.                                                                                                                                                                 | 13.7 | 315       |
| 78 | Transposable elements and small RNAs contribute to gene expression divergence between<br><i>Arabidopsis thaliana</i> and <i>Arabidopsis lyrata</i> . Proceedings of the National Academy of<br>Sciences of the United States of America, 2011, 108, 2322-2327. | 3.3  | 308       |
| 79 | Diversity of Flowering Responses in Wild Arabidopsis thaliana Strains. PLoS Genetics, 2005, 1, e6.                                                                                                                                                             | 1.5  | 303       |
| 80 | Cell-Cell Signaling and Movement by the Floral Transcription Factors LEAFY and APETALA1. Science, 2000, 289, 779-781.                                                                                                                                          | 6.0  | 300       |
| 81 | Highly Specific Gene Silencing by Artificial miRNAs in Rice. PLoS ONE, 2008, 3, e1829.                                                                                                                                                                         | 1.1  | 295       |
| 82 | <i>GAMYB-like</i> Genes, Flowering, and Gibberellin Signaling in Arabidopsis. Plant Physiology, 2001, 127, 1682-1693.                                                                                                                                          | 2.3  | 291       |
| 83 | Activation of Floral Homeotic Genes in Arabidopsis. Science, 1993, 261, 1723-1726.                                                                                                                                                                             | 6.0  | 284       |
| 84 | Stem cells that make stems. Nature, 2002, 415, 751-754.                                                                                                                                                                                                        | 13.7 | 282       |
| 85 | Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. ELife, 2016, 5, .                                                              | 2.8  | 282       |
| 86 | The role of JAGGED in shaping lateral organs. Development (Cambridge), 2004, 131, 1101-1110.                                                                                                                                                                   | 1.2  | 277       |
| 87 | Stressâ€induced changes in the <i>Arabidopsis thaliana</i> transcriptome analyzed using wholeâ€genome<br>tiling arrays. Plant Journal, 2009, 58, 1068-1082.                                                                                                    | 2.8  | 273       |
| 88 | A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Current Biology, 1997, 7, 95-104.                                                                                                                                                                       | 1.8  | 271       |
| 89 | The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant Journal, 1999, 20, 259-263.                                                                                                          | 2.8  | 269       |
| 90 | A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell, 2019, 178, 1260-1272.e14.                                                                                                                                                     | 13.5 | 265       |

| #   | Article                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Natural variation in light sensitivity of Arabidopsis. Nature Genetics, 2001, 29, 441-446.                                                                                              | 9.4  | 261       |
| 92  | Genome-wide analysis of local chromatin packing in <i>Arabidopsis thaliana</i> . Genome Research, 2015, 25, 246-256.                                                                    | 2.4  | 254       |
| 93  | Species-wide Genetic Incompatibility Analysis Identifies Immune Genes as Hot Spots of Deleterious<br>Epistasis. Cell, 2014, 159, 1341-1351.                                             | 13.5 | 247       |
| 94  | High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nature Communications, 2018, 9, 541.                                                             | 5.8  | 243       |
| 95  | Reference-guided assembly of four diverse <i>Arabidopsis thaliana</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10249-10254. | 3.3  | 237       |
| 96  | MicroRNA Gene Evolution in <i>Arabidopsis lyrata</i> and <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2010, 22, 1074-1089.                                                              | 3.1  | 234       |
| 97  | Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with<br>Agrobacterium. Plant Journal, 2000, 22, 531-541.                                        | 2.8  | 233       |
| 98  | The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature, 2021, 598, 495-499.                                                                                    | 13.7 | 223       |
| 99  | Increased Leaf Size: Different Means to an End  Â. Plant Physiology, 2010, 153, 1261-1279.                                                                                              | 2.3  | 222       |
| 100 | Requirement of Homeobox Gene STIMPY/WOX9 for Arabidopsis Meristem Growth and Maintenance.<br>Current Biology, 2005, 15, 436-440.                                                        | 1.8  | 219       |
| 101 | Fast-Forward Genetics Identifies Plant CPL Phosphatases as Regulators of miRNA Processing Factor<br>HYL1. Cell, 2012, 151, 859-870.                                                     | 13.5 | 219       |
| 102 | Two gap genes mediate maternal terminal pattern information in Drosophila. Science, 1990, 248,<br>495-498.                                                                              | 6.0  | 218       |
| 103 | Fast-forward genetics enabled by new sequencing technologies. Trends in Plant Science, 2011, 16, 282-288.                                                                               | 4.3  | 216       |
| 104 | Simultaneous alignment of short reads against multiple genomes. Genome Biology, 2009, 10, R98.                                                                                          | 13.9 | 215       |
| 105 | Plant secondary siRNA production determined by microRNA-duplex structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2461-2466.        | 3.3  | 215       |
| 106 | On reconciling the interactions between <i>APETALA2</i> , miR172 and <i>AGAMOUS</i> with the ABC model of flower development. Development (Cambridge), 2010, 137, 3633-3642.            | 1.2  | 214       |
| 107 | Building Beauty. Developmental Cell, 2002, 2, 135-142.                                                                                                                                  | 3.1  | 212       |
| 108 | Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis.<br>BMC Biology, 2011, 9, 64.                                                           | 1.7  | 209       |

| #   | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Mutation bias reflects natural selection in Arabidopsis thaliana. Nature, 2022, 602, 101-105.                                                                                                                                                                  | 13.7 | 206       |
| 110 | Modes of intercellular transcription factor movement in the Arabidopsis apex. Development (Cambridge), 2003, 130, 3735-3745.                                                                                                                                   | 1.2  | 204       |
| 111 | Recent speciation of <i>Capsella rubella</i> from <i>Capsella grandiflora</i> , associated with loss of self-incompatibility and an extreme bottleneck. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5246-5251. | 3.3  | 204       |
| 112 | Regulatory Elements of the Floral Homeotic GeneAGAMOUSIdentified by Phylogenetic Footprinting and Shadowing[W]. Plant Cell, 2003, 15, 1296-1309.                                                                                                               | 3.1  | 200       |
| 113 | Improved white spruce ( <i>Picea glauca</i> ) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant Journal, 2015, 83, 189-212.                                                                  | 2.8  | 200       |
| 114 | Prominent topologically associated domains differentiate global chromatin packing in rice from<br>Arabidopsis. Nature Plants, 2017, 3, 742-748.                                                                                                                | 4.7  | 200       |
| 115 | Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nature Genetics, 2016, 48, 1077-1082.                                                                                  | 9.4  | 198       |
| 116 | The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. ELife, 2013, 2, e01426.                                                                                                                                              | 2.8  | 197       |
| 117 | Structural Features Determining Flower-Promoting Activity of <i>Arabidopsis</i> FLOWERING LOCUS<br>T. Plant Cell, 2014, 26, 552-564.                                                                                                                           | 3.1  | 196       |
| 118 | Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature, 2019,<br>569, 265-269.                                                                                                                                          | 13.7 | 196       |
| 119 | The Floral Regulator LEAFY Evolves by Substitutions in the DNA Binding Domain. Science, 2005, 308, 260-263.                                                                                                                                                    | 6.0  | 195       |
| 120 | The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nature Genetics, 2006, 38, 711-715.                                                                                                 | 9.4  | 191       |
| 121 | Genome-wide analysis of chromatin packing in <i>Arabidopsis thaliana</i> at single-gene resolution.<br>Genome Research, 2016, 26, 1057-1068.                                                                                                                   | 2.4  | 187       |
| 122 | Evolution of DNA Methylation Patterns in the Brassicaceae is Driven by Differences in Genome<br>Organization. PLoS Genetics, 2014, 10, e1004785.                                                                                                               | 1.5  | 184       |
| 123 | A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48, 109-111.                                                                                                                                                                   | 9.4  | 184       |
| 124 | The Genetics of Flower Development: From Floral Induction to Ovule Morphogenesis. Annual Review of Genetics, 1995, 29, 19-39.                                                                                                                                  | 3.2  | 179       |
| 125 | Identification of plant microRNA homologs. Bioinformatics, 2006, 22, 359-360.                                                                                                                                                                                  | 1.8  | 178       |
| 126 | Genome-Wide Comparison of Nucleotide-Binding Site-Leucine-Rich Repeat-Encoding Genes<br>in <i>Arabidopsis</i> Â Â Â. Plant Physiology, 2011, 157, 757-769.                                                                                                     | 2.3  | 175       |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2460-2465. | 3.3  | 174       |
| 128 | Local-Scale Patterns of Genetic Variability, Outcrossing, and Spatial Structure in Natural Stands of Arabidopsis thaliana. PLoS Genetics, 2010, 6, e1000890.                                                                                  | 1.5  | 172       |
| 129 | Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science, 2015, 350, 450-454.                                                                                                                               | 6.0  | 171       |
| 130 | Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America.<br>Science, 2017, 357, 512-515.                                                                                                             | 6.0  | 169       |
| 131 | The Evolution of Selfing in <i>Arabidopsis thaliana</i> . Science, 2007, 317, 1070-1072.                                                                                                                                                      | 6.0  | 160       |
| 132 | Genetic Architecture of Flowering-Time Variation in <i>Arabidopsis thaliana</i> . Genetics, 2011, 188, 421-433.                                                                                                                               | 1.2  | 160       |
| 133 | Genome-wide patterns of single-feature polymorphism in <i>Arabidopsis thaliana</i> . Proceedings of the United States of America, 2007, 104, 12057-12062.                                                                                     | 3.3  | 157       |
| 134 | Temporal Control of Leaf Complexity by miRNA-Regulated Licensing of Protein Complexes. Current<br>Biology, 2014, 24, 2714-2719.                                                                                                               | 1.8  | 157       |
| 135 | Cenomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana.<br>Nature Ecology and Evolution, 2018, 2, 352-358.                                                                                           | 3.4  | 157       |
| 136 | Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 2015, 1, 14023.                                                                                                        | 4.7  | 156       |
| 137 | The Role of the <i>Arabidopsis</i> Morning Loop Components CCA1, LHY, PRR7, and PRR9 in Temperature Compensation. Plant Cell, 2010, 22, 3650-3661.                                                                                            | 3.1  | 155       |
| 138 | The recombination landscape in Arabidopsis thaliana F2 populations. Heredity, 2012, 108, 447-455.                                                                                                                                             | 1.2  | 155       |
| 139 | <i>LNK</i> genes integrate light and clock signaling networks at the core of the <i>Arabidopsis</i> oscillator. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12120-12125.                      | 3.3  | 154       |
| 140 | Flowering-Time Genes Modulate the Response to LEAFY Activity. Genetics, 1998, 150, 403-410.                                                                                                                                                   | 1.2  | 151       |
| 141 | Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the <i>Arabidopsis </i> LEAFY Transcription Factor Â. Plant Cell, 2011, 23, 1293-1306.                                                              | 3.1  | 148       |
| 142 | Century-scale Methylome Stability in a Recently Diverged Arabidopsis thaliana Lineage. PLoS Genetics, 2015, 11, e1004920.                                                                                                                     | 1.5  | 148       |
| 143 | Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature, 2019, 573, 126-129.                                                                                                                              | 13.7 | 148       |
| 144 | Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Developmental Biology, 2007, 309, 306-316.                                                                                             | 0.9  | 147       |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Structure Determinants for Accurate Processing of miR172a in Arabidopsis thaliana. Current Biology, 2010, 20, 42-48.                                                                           | 1.8  | 146       |
| 146 | Arabidopsis thaliana and Pseudomonas Pathogens Exhibit Stable Associations over Evolutionary<br>Timescales. Cell Host and Microbe, 2018, 24, 168-179.e4.                                       | 5.1  | 145       |
| 147 | The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta, 2005, 221, 523-530.                                        | 1.6  | 144       |
| 148 | Climate Change and the Integrity of Science. Science, 2010, 328, 689-690.                                                                                                                      | 6.0  | 143       |
| 149 | Epialleles in plant evolution. Genome Biology, 2012, 13, 249.                                                                                                                                  | 13.9 | 142       |
| 150 | A genetic framework for fruit patterning in Arabidopsis thaliana. Development (Cambridge), 2005, 132,<br>4687-4696.                                                                            | 1.2  | 141       |
| 151 | High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs<br>in <i>Arabidopsis</i> . Genome Research, 2012, 22, 163-176.                              | 2.4  | 140       |
| 152 | FRIGIDA-Independent Variation in Flowering Time of Natural Arabidopsis thaliana Accessions. Genetics, 2005, 170, 1197-1207.                                                                    | 1.2  | 138       |
| 153 | User guide for mapping-by-sequencing in Arabidopsis. Genome Biology, 2013, 14, R61.                                                                                                            | 3.8  | 138       |
| 154 | Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three<br>Arabidopsis Accessions Cultivated in Ten Laboratories Â. Plant Physiology, 2010, 152, 2142-2157. | 2.3  | 137       |
| 155 | A genetic and molecular model for flower development in <i>Arabidopsis thaliana</i> . Development<br>(Cambridge), 1991, 113, 157-167.                                                          | 1.2  | 136       |
| 156 | The <i>NGATHA</i> Genes Direct Style Development in the <i>Arabidopsis</i> Gynoecium Â. Plant Cell, 2009, 21, 1394-1409.                                                                       | 3.1  | 135       |
| 157 | Evolution of Floral Meristem Identity Genes. Analysis ofLolium temulentum Genes Related to APETALA1<br>andLEAFY of Arabidopsis. Plant Physiology, 2001, 125, 1788-1801.                        | 2.3  | 134       |
| 158 | Evolution of <i>Arabidopsis thaliana</i> microRNAs from random sequences. Rna, 2008, 14, 2455-2459.                                                                                            | 1.6  | 133       |
| 159 | Genomeâ€wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies. Molecular Ecology, 2010, 19, 968-984.                                          | 2.0  | 133       |
| 160 | Sp1/egr-like zinc-finger protein required for endoderm specification and germ-layer formation in<br>Drosophila. Nature, 1994, 369, 664-668.                                                    | 13.7 | 129       |
| 161 | Functional divergence of the TFL1 -like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes To Cells, 2001, 6, 327-336.                                        | 0.5  | 128       |
| 162 | NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development (Cambridge), 2006, 133,<br>1645-1655.                                                                             | 1.2  | 128       |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Quantitative Trait Loci Controlling Light and Hormone Response in Two Accessions of <i>Arabidopsis thaliana</i> . Genetics, 2002, 160, 683-696.                                                                          | 1.2 | 127       |
| 164 | Interaction of <i>LEAFY</i> , <i>AGAMOUS</i> and <i>TERMINAL FLOWER1</i> in maintaining floral meristem identity in <i>Arabidopsis</i> . Development (Cambridge), 2002, 129, 2519-2527.                                  | 1.2 | 124       |
| 165 | Transposon Variants and Their Effects on Gene Expression in Arabidopsis. PLoS Genetics, 2013, 9, e1003255.                                                                                                               | 1.5 | 122       |
| 166 | Rapid and Inexpensive Whole-Genome Genotyping-by-Sequencing for Crossover Localization and Fine-Scale Genetic Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 385-398.                                                   | 0.8 | 122       |
| 167 | Role of recently evolved miRNA regulation of sunflower <i>HaWRKY6</i> in response to temperature damage. New Phytologist, 2012, 195, 766-773.                                                                            | 3.5 | 118       |
| 168 | Triggering the formation of tasiRNAs in Arabidopsis thaliana : the role of microRNA miR173. EMBO Reports, 2009, 10, 264-270.                                                                                             | 2.0 | 117       |
| 169 | A Promiscuous Intermediate Underlies the Evolution of LEAFY DNA Binding Specificity. Science, 2014, 343, 645-648.                                                                                                        | 6.0 | 117       |
| 170 | The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genetics, 2018, 14, e1007155.                                                                                                      | 1.5 | 116       |
| 171 | Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Molecules and Cells, 2004, 17, 95-101.                                                                                                       | 1.0 | 112       |
| 172 | Regulation and functional specialization of small RNA–target nodes during plant development.<br>Current Opinion in Plant Biology, 2009, 12, 622-627.                                                                     | 3.5 | 111       |
| 173 | The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Scientific Reports, 2017, 7, 44898.                                                           | 1.6 | 111       |
| 174 | Genetic linkage map of the guppy, <i>Poecilia reticulata</i> , and quantitative trait loci analysis of male<br>size and colour variation. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2195-2208. | 1.2 | 110       |
| 175 | Epigenetic variation: origin and transgenerational inheritance. Current Opinion in Plant Biology, 2012, 15, 562-567.                                                                                                     | 3.5 | 110       |
| 176 | Specific Gene Silencing by Artificial MicroRNAs in <i>Physcomitrella patens</i> : An Alternative to<br>Targeted Gene Knockouts  Â. Plant Physiology, 2008, 148, 684-693.                                                 | 2.3 | 109       |
| 177 | Cis-regulatory Changes at FLOWERING LOCUS T Mediate Natural Variation in Flowering Responses of Arabidopsis thaliana. Genetics, 2009, 183, 723-732.                                                                      | 1.2 | 109       |
| 178 | Next Generation Molecular Ecology. Molecular Ecology, 2010, 19, 1-3.                                                                                                                                                     | 2.0 | 109       |
| 179 | Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development (Cambridge), 2009, 136, 1613-1620.                                                | 1.2 | 106       |
| 180 | Coordination of Flower Maturation by a Regulatory Circuit of Three MicroRNAs. PLoS Genetics, 2013, 9, e1003374.                                                                                                          | 1.5 | 105       |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Paired-end RAD-seq for <i>de novo</i> assembly and marker design without available reference.<br>Bioinformatics, 2011, 27, 2187-2193.                                                                                          | 1.8  | 104       |
| 182 | Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. PLoS Genetics, 2015, 11, e1005588.                                                                    | 1.5  | 103       |
| 183 | A Functional and Evolutionary Perspective on Transcription Factor Binding in <i>Arabidopsis thaliana</i> . Plant Cell, 2014, 26, 3894-3910.                                                                                    | 3.1  | 102       |
| 184 | The Impact of Arabidopsis on Human Health: Diversifying Our Portfolio. Cell, 2008, 133, 939-943.                                                                                                                               | 13.5 | 101       |
| 185 | Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana.<br>Nucleic Acids Research, 2011, 39, 2880-2889.                                                                                 | 6.5  | 101       |
| 186 | An Ultra High-Density <i>Arabidopsis thaliana</i> Crossover Map That Refines the Influences of Structural Variation and Epigenetic Features. Genetics, 2019, 213, 771-787.                                                     | 1.2  | 101       |
| 187 | NFL1, a Nicotiana tabacumLEAFY-Like Gene, Controls Meristem Initiation and Floral Structure. Plant and Cell Physiology, 2001, 42, 1130-1139.                                                                                   | 1.5  | 99        |
| 188 | Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell, 2021, 33, 814-831.                                                                                                                                         | 3.1  | 99        |
| 189 | easyGWAS: A Cloud-Based Platform for Comparing the Results of Genome-Wide Association Studies.<br>Plant Cell, 2017, 29, 5-19.                                                                                                  | 3.1  | 98        |
| 190 | Multiple modes of convergent adaptation in the spread of glyphosate-resistant <i>Amaranthus<br/>tuberculatus</i> . Proceedings of the National Academy of Sciences of the United States of America,<br>2019, 116, 21076-21084. | 3.3  | 98        |
| 191 | Identifying genetic variants underlying phenotypic variation in plants without complete genomes.<br>Nature Genetics, 2020, 52, 534-540.                                                                                        | 9.4  | 98        |
| 192 | Amino acid polymorphisms in <i>Arabidopsis</i> phytochrome B cause differential responses to light.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3157-3162.                  | 3.3  | 97        |
| 193 | Fine-Grained Analysis of Spontaneous Mutation Spectrum and Frequency in <i>Arabidopsis thaliana</i> . Genetics, 2019, 211, 703-714.                                                                                            | 1.2  | 97        |
| 194 | Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function.<br>EMBO Journal, 2012, 32, 511-523.                                                                                           | 3.5  | 96        |
| 195 | Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene<br>AGAMOUS-LIKE6. Plant Journal, 2010, 62, 807-816.                                                                          | 2.8  | 95        |
| 196 | Population Genomics for Understanding Adaptation in Wild Plant Species. Annual Review of Genetics, 2015, 49, 315-338.                                                                                                          | 3.2  | 94        |
| 197 | Independent Regulation of Flowering by Phytochrome B and Gibberellins in Arabidopsis1. Plant<br>Physiology, 1999, 120, 1025-1032.                                                                                              | 2.3  | 93        |
| 198 | QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines. PLoS ONE, 2009, 4, e4318.                                                                                                                | 1.1  | 92        |

| #   | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biology, 2008, 9, R112.                                                                                       | 13.9 | 91        |
| 200 | AraPheno: a public database for <i>Arabidopsis thaliana</i> phenotypes. Nucleic Acids Research, 2017, 45, D1054-D1059.                                                                                                                                         | 6.5  | 91        |
| 201 | The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant Journal, 1999, 18, 195-203.                                                   | 2.8  | 90        |
| 202 | Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon<br>silencing in <i>Arabidopsis thaliana</i> F1 epihybrids. Proceedings of the National Academy of Sciences<br>of the United States of America, 2016, 113, E2083-92. | 3.3  | 90        |
| 203 | Natural Variation in Arabidopsis. How Do We Find the Causal Genes?. Plant Physiology, 2005, 138, 567-568.                                                                                                                                                      | 2.3  | 88        |
| 204 | Signaling in plants by intercellular RNA and protein movement. Genes and Development, 2002, 16, 151-158.                                                                                                                                                       | 2.7  | 86        |
| 205 | Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors.<br>Plant Cell, 2015, 27, 3175-3189.                                                                                                                             | 3.1  | 86        |
| 206 | Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biology, 2017, 18, 157.                                                                                                 | 3.8  | 86        |
| 207 | Functional analysis of splice variant expression of MADS AFFECTING FLOWERING 2 of Arabidopsis thaliana. Plant Molecular Biology, 2013, 81, 57-69.                                                                                                              | 2.0  | 85        |
| 208 | NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development (Cambridge), 2006, 133, 2285-2285.                                                                                                                                                | 1.2  | 84        |
| 209 | Distinct Expression Patterns of Natural Antisense Transcripts in Arabidopsis. Plant Physiology, 2007, 144, 1247-1255.                                                                                                                                          | 2.3  | 84        |
| 210 | Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nature Reviews<br>Genetics, 2015, 16, 285-298.                                                                                                                                   | 7.7  | 84        |
| 211 | On the post-glacial spread of human commensal Arabidopsis thaliana. Nature Communications, 2017, 8, 14458.                                                                                                                                                     | 5.8  | 83        |
| 212 | The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog. Nucleic Acids<br>Research, 2018, 46, D1150-D1156.                                                                                                                           | 6.5  | 83        |
| 213 | Terminal versus segmental development in the Drosophila embryo: the role of the homeotic gene fork<br>head. Roux's Archives of Developmental Biology, 1988, 197, 345-354.                                                                                      | 1.2  | 82        |
| 214 | MIGS: miRNAâ€induced gene silencing. Plant Journal, 2012, 70, 541-547.                                                                                                                                                                                         | 2.8  | 82        |
| 215 | Transcriptome assemblies for studying sex-biased gene expression in the guppy, Poecilia reticulata.<br>BMC Genomics, 2014, 15, 400.                                                                                                                            | 1.2  | 82        |
| 216 | Improving the Annotation of Arabidopsis lyrata Using RNA-Seq Data. PLoS ONE, 2015, 10, e0137391.                                                                                                                                                               | 1.1  | 82        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Evolution of the <i>S</i> -Locus Region in Arabidopsis Relatives  Â. Plant Physiology, 2011, 157, 937-946.                                                                                                                                | 2.3 | 80        |
| 218 | Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Research, 2014, 42, 9925-9936.                                                                                                          | 6.5 | 80        |
| 219 | Population genomics of natural and experimental populations of guppies ( <i>Poecilia reticulata</i> ).<br>Molecular Ecology, 2015, 24, 389-408.                                                                                           | 2.0 | 79        |
| 220 | The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population.<br>PLoS ONE, 2016, 11, e0169087.                                                                                                       | 1.1 | 79        |
| 221 | Adaptive diversification of growth allometry in the plant <i>Arabidopsis thaliana</i> . Proceedings of the United States of America, 2018, 115, 3416-3421.                                                                                | 3.3 | 78        |
| 222 | A Genetic Defect Caused by a Triplet Repeat Expansion in <i>Arabidopsis thaliana</i> . Science, 2009, 323, 1060-1063.                                                                                                                     | 6.0 | 75        |
| 223 | RNA 3′ processing functions of <i>Arabidopsis</i> FCA and FPA limit intergenic transcription.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8508-8513.                                   | 3.3 | 75        |
| 224 | The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development inArabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8571-8576. | 3.3 | 74        |
| 225 | <i>STIMPY</i> mediates cytokinin signaling during shoot meristem establishment in <i>Arabidopsis</i> seedlings. Development (Cambridge), 2010, 137, 541-549.                                                                              | 1.2 | 74        |
| 226 | Opsin gene duplication and diversification in the guppy, a model for sexual selection. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 33-42.                                                                         | 1.2 | 73        |
| 227 | Activation of a Plant NLR Complex through Heteromeric Association with an Autoimmune Risk Variant of Another NLR. Current Biology, 2017, 27, 1148-1160.                                                                                   | 1.8 | 73        |
| 228 | Comparing Arabidopsis receptor kinase and receptor proteinâ€mediated immune signaling reveals<br>BIK1â€dependent differences. New Phytologist, 2019, 221, 2080-2095.                                                                      | 3.5 | 73        |
| 229 | Mining Herbaria for Plant Pathogen Genomes: Back to the Future. PLoS Pathogens, 2014, 10, e1004028.                                                                                                                                       | 2.1 | 72        |
| 230 | Temporally and spatially controlled induction of gene expression inArabidopsis thaliana. Plant<br>Journal, 2004, 38, 164-171.                                                                                                             | 2.8 | 71        |
| 231 | Deep sequencing to reveal new variants in pooled DNA samples. Human Mutation, 2009, 30, 1703-1712.                                                                                                                                        | 1.1 | 71        |
| 232 | Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding<br>Cassette Transporter in Distinct Tryptophan Metabolic Pathways. Plant Physiology, 2015, 168, 814-827.                                | 2.3 | 71        |
| 233 | An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant<br>Methods, 2018, 14, 65.                                                                                                               | 1.9 | 70        |
| 234 | Redundant Enhancers Mediate Transcriptional Repression of AGAMOUS by APETALA2. Developmental<br>Biology, 1999, 216, 260-264.                                                                                                              | 0.9 | 69        |

| #   | Article                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nature Communications, 2014, 5, 4276.                                                                                                                                              | 5.8  | 69        |
| 236 | Long-term balancing selection drives evolution of immunity genes in Capsella. ELife, 2019, 8, .                                                                                                                                                                                                           | 2.8  | 69        |
| 237 | Primordium specific requirement of the homeotic gene fork head in the developing gut of the<br>Drosophila embryo. Roux's Archives of Developmental Biology, 1989, 198, 201-210.                                                                                                                           | 1.2  | 68        |
| 238 | Independent Control of Gibberellin Biosynthesis and Flowering Time by the Circadian Clock in Arabidopsis. Plant Physiology, 2002, 130, 1770-1775.                                                                                                                                                         | 2.3  | 67        |
| 239 | Haplotype Structure and Phenotypic Associations in the Chromosomal Regions Surrounding Two<br>Arabidopsis thaliana Flowering Time LociSequence data from this article have been deposited with the<br>EMBL/GenBank Data Libraries under accession nos. AY781906, AY785055 Genetics, 2004, 168, 1627-1638. | 1.2  | 67        |
| 240 | A zinc knuckle protein that negatively controls morning-specific growth in <i>Arabidopsis<br/>thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008,<br>105, 17193-17198.                                                                                  | 3.3  | 67        |
| 241 | Comparative Analysis of the MIR319a MicroRNA Locus in Arabidopsis and Related Brassicaceae.<br>Molecular Biology and Evolution, 2008, 25, 892-902.                                                                                                                                                        | 3.5  | 67        |
| 242 | Conservation and divergence of microRNA families in plants. Genome Biology, 2005, 6, P13.                                                                                                                                                                                                                 | 13.9 | 66        |
| 243 | Global effects of the small RNA biogenesis machinery on the <i>Arabidopsis thaliana</i><br>transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 2010,<br>107, 17466-17473.                                                                                     | 3.3  | 66        |
| 244 | Linkage Analysis Reveals the Independent Origin of Poeciliid Sex Chromosomes and a Case of Atypical<br>Sex Inheritance in the Guppy (Poecilia reticulata). Genetics, 2009, 182, 365-374.                                                                                                                  | 1.2  | 65        |
| 245 | Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes.<br>Plant Journal, 2009, 57, 184-194.                                                                                                                                                             | 2.8  | 65        |
| 246 | Ten years of genetics and genomics: what have we achieved and where are we heading?. Nature Reviews<br>Genetics, 2010, 11, 723-733.                                                                                                                                                                       | 7.7  | 65        |
| 247 | Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to<br>heritable phenotypic variation. Proceedings of the National Academy of Sciences of the United States<br>of America, 2018, 115, E9145-E9152.                                                          | 3.3  | 65        |
| 248 | HASTY modulates miRNA biogenesis by linking pri-miRNA transcription and processing. Molecular<br>Plant, 2021, 14, 426-439.                                                                                                                                                                                | 3.9  | 63        |
| 249 | Impaired sterol ester synthesis alters the response of <i>Arabidopsis thaliana</i> to <i>Phytophthora infestans</i> . Plant Journal, 2013, 73, 456-468.                                                                                                                                                   | 2.8  | 62        |
| 250 | AGRONOMICS1: A New Resource for Arabidopsis Transcriptome Profiling  Â. Plant Physiology, 2010, 152,<br>487-499.                                                                                                                                                                                          | 2.3  | 61        |
| 251 | Genome-Wide Identification of KANADI1 Target Genes. PLoS ONE, 2013, 8, e77341.                                                                                                                                                                                                                            | 1.1  | 61        |
| 252 | Mating system shifts and transposable element evolution in the plant genus Capsella. BMC Genomics, 2014, 15, 602.                                                                                                                                                                                         | 1.2  | 61        |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Chromatin in 3D: progress and prospects for plants. Genome Biology, 2015, 16, 170.                                                                                                                                                                   | 3.8  | 61        |
| 254 | SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7018-E7027. | 3.3  | 61        |
| 255 | Complex Evolutionary Events at a Tandem Cluster of Arabidopsis thaliana Genes Resulting in a<br>Single-Locus Genetic Incompatibility. PLoS Genetics, 2011, 7, e1002164.                                                                              | 1.5  | 60        |
| 256 | Genetic architecture of nonadditive inheritance in <i>Arabidopsis thaliana</i> hybrids. Proceedings of the United States of America, 2016, 113, E7317-E7326.                                                                                         | 3.3  | 58        |
| 257 | Atypical Resistance Protein RPW8/HR Triggers Oligomerization of the NLR Immune Receptor RPP7 and Autoimmunity. Cell Host and Microbe, 2020, 27, 405-417.e6.                                                                                          | 5.1  | 58        |
| 258 | Genetic ablation of flowers in transgenicArabidopsis. Plant Journal, 1998, 15, 799-804.                                                                                                                                                              | 2.8  | 57        |
| 259 | <scp>DNA</scp> sequence properties that predict susceptibility to epiallelic switching. EMBO Journal, 2017, 36, 617-628.                                                                                                                             | 3.5  | 56        |
| 260 | RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genetics, 2019, 15, e1008313.                                                                                                                                                   | 1.5  | 56        |
| 261 | Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME Journal, 2020, 14, 2116-2130.                                                           | 4.4  | 56        |
| 262 | Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf<br>Growth and Development. Plant Physiology, 2017, 173, 1269-1282.                                                                                   | 2.3  | 55        |
| 263 | The MicroRNA miR773 Is Involved in the <i>Arabidopsis</i> Immune Response to Fungal Pathogens.<br>Molecular Plant-Microbe Interactions, 2018, 31, 249-259.                                                                                           | 1.4  | 55        |
| 264 | Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana. Plant Methods, 2018, 14, 63.                                                                                                                     | 1.9  | 55        |
| 265 | Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Research, 2000, 9, 223-227.                                                                                                                      | 1.3  | 54        |
| 266 | ceRNAs: miRNA Target Mimic Mimics. Cell, 2011, 147, 1431-1432.                                                                                                                                                                                       | 13.5 | 54        |
| 267 | Analysis of a Plant Complex Resistance Gene Locus Underlying Immune-Related Hybrid Incompatibility and Its Occurrence in Nature. PLoS Genetics, 2014, 10, e1004848.                                                                                  | 1.5  | 54        |
| 268 | Activation of the Arabidopsis thaliana Immune System by Combinations of Common ACD6 Alleles. PLoS<br>Genetics, 2014, 10, e1004459.                                                                                                                   | 1.5  | 54        |
| 269 | What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity, 2017, 118, 52-63.                                                                                                                                          | 1.2  | 54        |
| 270 | Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling. Nature Communications, 2019, 10, 2629.                                                                                         | 5.8  | 54        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Publishing in the time of COVID-19. ELife, 2020, 9, .                                                                                                                                                            | 2.8 | 54        |
| 272 | Temperature Induced Flowering in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2006, 1, 227-228.                                                                                                   | 1.2 | 53        |
| 273 | Directed Gene Silencing with Artificial MicroRNAs. Methods in Molecular Biology, 2010, 592, 71-88.                                                                                                               | 0.4 | 53        |
| 274 | Tissue-Specific Silencing of Arabidopsis SU(VAR)3-9 HOMOLOG8 by miR171a  Â. Plant Physiology, 2013, 161,<br>805-812.                                                                                             | 2.3 | 53        |
| 275 | Pigment Pattern Formation in the Guppy, <i>Poecilia reticulata</i> , Involves the Kita and Csf1ra<br>Receptor Tyrosine Kinases. Genetics, 2013, 194, 631-646.                                                    | 1.2 | 52        |
| 276 | Draft Genomes of Amaranthus tuberculatus, Amaranthus hybridus, and Amaranthus palmeri. Genome<br>Biology and Evolution, 2020, 12, 1988-1993.                                                                     | 1.1 | 51        |
| 277 | Regulation of Krüppel expression in the anlage of the Malpighian tubules in the Drosophila embryo.<br>Mechanisms of Development, 1990, 33, 57-67.                                                                | 1.7 | 50        |
| 278 | Detecting polymorphic regions in <i>Arabidopsis thaliana</i> with resequencing microarrays. Genome Research, 2008, 18, 918-929.                                                                                  | 2.4 | 50        |
| 279 | Genomeâ€wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly<br>diverse native range of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2018, 41, 1806-1820. | 2.8 | 49        |
| 280 | Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development (Cambridge), 2002, 129, 2519-27.                                                          | 1.2 | 49        |
| 281 | Conservation and Divergence of FCA Function between Arabidopsis and Rice. Plant Molecular Biology, 2005, 58, 823-838.                                                                                            | 2.0 | 47        |
| 282 | Gene Duplication and Divergence of Long Wavelength-Sensitive Opsin Genes in the Guppy, Poecilia reticulata. Journal of Molecular Evolution, 2011, 72, 240-252.                                                   | 0.8 | 47        |
| 283 | HUA2 Caused Natural Variation in Shoot Morphology of A. thaliana. Current Biology, 2007, 17, 1513-1519.                                                                                                          | 1.8 | 46        |
| 284 | FITNESS OF ARABIDOPSIS THALIANA MUTATION ACCUMULATION LINES WHOSE SPONTANEOUS MUTATIONS ARE KNOWN. Evolution; International Journal of Organic Evolution, 2012, 66, 2335-2339.                                   | 1.1 | 46        |
| 285 | Cooperation and Conflict in the Plant Immune System. PLoS Pathogens, 2016, 12, e1005452.                                                                                                                         | 2.1 | 46        |
| 286 | Methods for Genotyping-by-Sequencing. Methods in Molecular Biology, 2017, 1492, 221-242.                                                                                                                         | 0.4 | 45        |
| 287 | Ectopic Expression of SUPERMAN Suppresses Development of Petals and Stamens. Plant and Cell Physiology, 2002, 43, 52-57.                                                                                         | 1.5 | 44        |
| 288 | Salinity Is an Agent of Divergent Selection Driving Local Adaptation of Arabidopsis to Coastal<br>Habitats. Plant Physiology, 2015, 168, 915-929.                                                                | 2.3 | 44        |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | AraPheno and the AraGWAS Catalog 2020: a major database update including RNA-Seq and knockout<br>mutation data for Arabidopsis thaliana. Nucleic Acids Research, 2020, 48, D1063-D1068. | 6.5 | 44        |
| 290 | Commensal Pseudomonas strains facilitate protective response against pathogens in the host plant.<br>Nature Ecology and Evolution, 2022, 6, 383-396.                                    | 3.4 | 44        |
| 291 | Syntenyâ€based mappingâ€byâ€sequencing enabled by targeted enrichment. Plant Journal, 2012, 71, 517-526.                                                                                | 2.8 | 43        |
| 292 | Independent <i>FLC</i> Mutations as Causes of Flowering-Time Variation in <i>Arabidopsis thaliana</i> and <i>Capsella rubella</i> . Genetics, 2012, 192, 729-739.                       | 1.2 | 42        |
| 293 | Natural Variation in Biogenesis Efficiency of Individual Arabidopsis thaliana MicroRNAs. Current<br>Biology, 2012, 22, 166-170.                                                         | 1.8 | 42        |
| 294 | RST1 and RIPR connect the cytosolic RNA exosome to the Ski complex in Arabidopsis. Nature Communications, 2019, 10, 3871.                                                               | 5.8 | 42        |
| 295 | MSQT for choosing SNP assays from multiple DNA alignments. Bioinformatics, 2007, 23, 2784-2787.                                                                                         | 1.8 | 41        |
| 296 | Natural Diversity in Flowering Responses of <i>Arabidopsis thaliana</i> Caused by Variation in a Tandem Gene Array. Genetics, 2010, 186, 263-276.                                       | 1.2 | 40        |
| 297 | Novel allelic variants in <i>ACD6</i> cause hybrid necrosis in local collection of <i>Arabidopsis thaliana</i> . New Phytologist, 2017, 213, 900-915.                                   | 3.5 | 40        |
| 298 | Modulating the timing of flowering. Current Opinion in Biotechnology, 1997, 8, 195-199.                                                                                                 | 3.3 | 39        |
| 299 | Arabidopsis—a model genus for speciation. Current Opinion in Genetics and Development, 2007, 17,<br>500-504.                                                                            | 1.5 | 39        |
| 300 | Identification of a Spontaneous Frame Shift Mutation in a Nonreference Arabidopsis Accession Using<br>Whole Genome Sequencing. Plant Physiology, 2010, 153, 652-654.                    | 2.3 | 39        |
| 301 | Effector-Triggered Immune Response in <i>Arabidopsis thaliana</i> Is a Quantitative Trait. Genetics, 2016, 204, 337-353.                                                                | 1.2 | 38        |
| 302 | NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches. Nature Communications, 2019, 10, 2630.                               | 5.8 | 38        |
| 303 | Transient Assays for the Analysis of miRNA Processing and Function. Methods in Molecular Biology, 2010, 592, 255-264.                                                                   | 0.4 | 37        |
| 304 | Improved Reference Genome Uncovers Novel Sex-Linked Regions in the Guppy (Poecilia reticulata).<br>Genome Biology and Evolution, 2020, 12, 1789-1805.                                   | 1.1 | 36        |
| 305 | The Earth BioGenome project: opportunities and challenges for plant genomics and conservation.<br>Plant Journal, 2020, 102, 222-229.                                                    | 2.8 | 35        |
| 306 | Multiple Pigment Cell Types Contribute to the Black, Blue, and Orange Ornaments of Male Guppies<br>(Poecilia reticulata). PLoS ONE, 2014, 9, e85647.                                    | 1.1 | 34        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Nonlinear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS<br>Biology, 2019, 17, e3000214.                                                                    | 2.6 | 34        |
| 308 | Complex Relationships between Chromatin Accessibility, Sequence Divergence, and Gene Expression in Arabidopsis thaliana. Molecular Biology and Evolution, 2018, 35, 837-854.                        | 3.5 | 33        |
| 309 | The population genomics of adaptive loss of function. Heredity, 2021, 126, 383-395.                                                                                                                 | 1.2 | 33        |
| 310 | A new role for histone demethylases in the maintenance of plant genome integrity. ELife, 2020, 9, .                                                                                                 | 2.8 | 33        |
| 311 | Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter. Plant Cell, 1998, 10, 791.                                                                                          | 3.1 | 32        |
| 312 | Natural variation in phytochrome signaling. Seminars in Cell and Developmental Biology, 2000, 11, 523-530.                                                                                          | 2.3 | 32        |
| 313 | Arabidopsis proteins with a transposon-related domain act in gene silencing. Nature Communications, 2017, 8, 15122.                                                                                 | 5.8 | 32        |
| 314 | A Proposal Regarding Best Practices for Validating the Identity of Genetic Stocks and the Effects of<br>Genetic Variants. Plant Cell, 2016, 28, 606-609.                                            | 3.1 | 31        |
| 315 | A Role for the F-Box Protein HAWAIIAN SKIRT in Plant microRNA Function. Plant Physiology, 2018, 176, 730-741.                                                                                       | 2.3 | 31        |
| 316 | In Planta Transformation of Arabidopsis. Cold Spring Harbor Protocols, 2006, 2006, prot4668.                                                                                                        | 0.2 | 31        |
| 317 | Accurate indel prediction using paired-end short reads. BMC Genomics, 2013, 14, 132.                                                                                                                | 1.2 | 30        |
| 318 | Dissection of miRNA Pathways Using Arabidopsis Mesophyll Protoplasts. Molecular Plant, 2015, 8,<br>261-275.                                                                                         | 3.9 | 30        |
| 319 | The APETALA2 Domain Is Related to a Novel Type of DNA Binding Domain. Plant Cell, 1995, 7, 388.                                                                                                     | 3.1 | 29        |
| 320 | Sizing Up the Floral Meristem. Plant Physiology, 1996, 112, 5-10.                                                                                                                                   | 2.3 | 28        |
| 321 | <i>Arabidopsis</i> and relatives as models for the study of genetic and genomic incompatibilities.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1815-1823. | 1.8 | 27        |
| 322 | Arabidopsis genome: Life without Notch. Current Biology, 2001, 11, R112-R114.                                                                                                                       | 1.8 | 26        |
| 323 | DNA Topoisomerase 1α Promotes Transcriptional Silencing of Transposable Elements through DNA<br>Methylation and Histone Lysine 9 Dimethylation in Arabidopsis. PLoS Genetics, 2014, 10, e1004446.   | 1.5 | 26        |
| 324 | A Truncated Singleton NLR Causes Hybrid Necrosis in <i>Arabidopsis thaliana</i> . Molecular Biology<br>and Evolution, 2021, 38, 557-574.                                                            | 3.5 | 26        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Setting Up Arabidopsis Crosses. Cold Spring Harbor Protocols, 2006, 2006, pdb.prot4623-pdb.prot4623.                                                                                           | 0.2  | 26        |
| 326 | Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR<br>resistance gene. PLoS Genetics, 2018, 14, e1007628.                                            | 1.5  | 25        |
| 327 | Implementing a "publish, then review" model of publishing. ELife, 2020, 9, .                                                                                                                   | 2.8  | 25        |
| 328 | Developmental Genetics and New Sequencing Technologies: The Rise of Nonmodel Organisms.<br>Developmental Cell, 2011, 21, 65-76.                                                                | 3.1  | 24        |
| 329 | Chlorosis caused by two recessively interacting genes reveals a role of <scp>RNA</scp> helicase in hybrid breakdown in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 91, 251-262.         | 2.8  | 24        |
| 330 | Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition. ELife, 2021, 10, .                                                       | 2.8  | 24        |
| 331 | From floral induction to floral shape. Current Opinion in Plant Biology, 1998, 1, 55-59.                                                                                                       | 3.5  | 23        |
| 332 | In vitro culture of embryos of the guppy,Poecilia reticulata. Developmental Dynamics, 2006, 235, 617-622.                                                                                      | 0.8  | 23        |
| 333 | Trowel: a fast and accurate error correction module for Illumina sequencing reads. Bioinformatics, 2014, 30, 3264-3265.                                                                        | 1.8  | 23        |
| 334 | One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and<br>Evolution of Plant–Pathogen Interactions. Annual Review of Phytopathology, 2021, 59, 213-237. | 3.5  | 23        |
| 335 | Quick Miniprep for Plant DNA Isolation. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5179-pdb.prot5179.                                                                                   | 0.2  | 22        |
| 336 | Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity, 2019, 122, 294-304.                                                                            | 1.2  | 22        |
| 337 | Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies. PLoS Genetics, 2021, 17, e1009566.   | 1.5  | 22        |
| 338 | The genetic architecture and population genomic signatures of glyphosate resistance in<br><i>Amaranthus tuberculatus</i> . Molecular Ecology, 2021, 30, 5373-5389.                             | 2.0  | 22        |
| 339 | ESTs and EST-linked polymorphisms for genetic mapping and phylogenetic reconstruction in the guppy,<br>Poecilia reticulata. BMC Genomics, 2007, 8, 269.                                        | 1.2  | 21        |
| 340 | Comprehensive analysis of <i>Arabidopsis</i> expression level polymorphisms with simple inheritance.<br>Molecular Systems Biology, 2009, 5, 242.                                               | 3.2  | 21        |
| 341 | Argonaute10 as a miRNA Locker. Cell, 2011, 145, 173-174.                                                                                                                                       | 13.5 | 21        |
| 342 | 1001 Proteomes: a functional proteomics portal for the analysis of <i>Arabidopsis thaliana</i> accessions. Bioinformatics, 2012, 28, 1303-1306.                                                | 1.8  | 21        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | New Arabidopsis Advanced Intercross Recombinant Inbred Lines Reveal Female Control of Nonrandom<br>Mating. Plant Physiology, 2014, 165, 175-185.                                                                   | 2.3  | 21        |
| 344 | The eLife approach to peer review. ELife, 2013, 2, e00799.                                                                                                                                                         | 2.8  | 21        |
| 345 | Evolutionary divergence of LFY function in the mustards Arabidopsis thaliana and Leavenworthia<br>crassa. Plant Molecular Biology, 2006, 62, 279-289.                                                              | 2.0  | 20        |
| 346 | LOCAS – A Low Coverage Assembly Tool for Resequencing Projects. PLoS ONE, 2011, 6, e23455.                                                                                                                         | 1.1  | 20        |
| 347 | Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae. Plant Journal, 2015, 81, 597-610.                                                                                               | 2.8  | 20        |
| 348 | <scp>EFFECTOR OF TRANSCRIPTION</scp> factors are novel plantâ€specific regulators associated with genomic <scp>DNA</scp> methylation in Arabidopsis. New Phytologist, 2019, 221, 261-278.                          | 3.5  | 20        |
| 349 | Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nature Communications, 2022, 13, 1294.              | 5.8  | 20        |
| 350 | What natural variation can teach us about resistance durability. Current Opinion in Plant Biology, 2020, 56, 89-98.                                                                                                | 3.5  | 18        |
| 351 | Tropical Trees as Time Capsules of Anthropogenic Activity. Trends in Plant Science, 2020, 25, 369-380.                                                                                                             | 4.3  | 18        |
| 352 | Chromosomeâ€level <i>Thlaspi arvense</i> genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Plant Biotechnology Journal, 2022, 20, 944-963. | 4.1  | 18        |
| 353 | Molecular organization of master mind, a neurogenic gene of Drosophila melanogaster. Molecular<br>Genetics and Genomics, 1987, 207, 374-384.                                                                       | 2.4  | 16        |
| 354 | Patterning the floral meristem. Seminars in Cell and Developmental Biology, 1998, 9, 221-226.                                                                                                                      | 2.3  | 16        |
| 355 | Transcriptional Networks Controlling Plant Development: Fig. 1 Plant Physiology, 2001, 125, 109-111.                                                                                                               | 2.3  | 16        |
| 356 | Genetic Analysis of Arabidopsis Mutants. Cold Spring Harbor Protocols, 2008, 2008, pdb.top35-pdb.top35.                                                                                                            | 0.2  | 16        |
| 357 | Natural Variation of Molecular and Morphological Gibberellin Responses. Plant Physiology, 2017, 173, 703-714.                                                                                                      | 2.3  | 16        |
| 358 | Floral patterning. Current Opinion in Genetics and Development, 1991, 1, 174-178.                                                                                                                                  | 1.5  | 15        |
| 359 | Hotheaded healer. Nature, 2005, 434, 443-443.                                                                                                                                                                      | 13.7 | 15        |
| 360 | Small RNAs in flower development. European Journal of Cell Biology, 2010, 89, 250-257.                                                                                                                             | 1.6  | 15        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants. BMC Genomics, 2016, 17, 853.                                                       | 1.2 | 15        |
| 362 | A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC Genetics, 2011, 12, 16.                                                                                                                  | 2.7 | 14        |
| 363 | Blue Native Polyacrylamide Gel Electrophoresis (BNâ€₽AGE) for the Analysis of Protein Oligomers in<br>Plants. Current Protocols in Plant Biology, 2020, 5, e20107.                                                           | 2.8 | 14        |
| 364 | Reading the Second Code: Mapping Epigenomes to Understand Plant Growth, Development, and Adaptation to the Environment. Plant Cell, 2012, 24, 2257-2261.                                                                     | 3.1 | 13        |
| 365 | <i>Adenylate cyclase 5</i> is required for melanophore and male pattern development in the guppy<br>( <i>Poecilia reticulata</i> ). Pigment Cell and Melanoma Research, 2015, 28, 545-558.                                   | 1.5 | 13        |
| 366 | Commensal <i>Pseudomonas</i> protect <i>Arabidopsis thaliana</i> from a coexisting pathogen via<br>multiple lineage-dependent mechanisms. ISME Journal, 2022, 16, 1235-1244.                                                 | 4.4 | 13        |
| 367 | Mutations in the <i>EDR1</i> Gene Alter the Response of <i>Arabidopsis thaliana</i> to<br><i>Phytophthora infestans</i> and the Bacterial PAMPs flg22 and elf18. Molecular Plant-Microbe<br>Interactions, 2015, 28, 122-133. | 1.4 | 12        |
| 368 | Doseâ€dependent interactions between two loci trigger altered shoot growth in BGâ€5Â×ÂKrotzenburgâ€0<br>(Kroâ€0) hybrids of <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 217, 392-406.                               | 3.5 | 12        |
| 369 | Maleâ€specific Yâ€chromosomal regions in waterhemp ( <i>Amaranthus tuberculatus</i> ) and Palmer<br>amaranth ( <i>Amaranthus palmeri</i> ). New Phytologist, 2021, 229, 3522-3533.                                           | 3.5 | 12        |
| 370 | Allelochemicals of the phenoxazinone class act at physiologically relevant concentrations. Plant<br>Signaling and Behavior, 2016, 11, e1176818.                                                                              | 1.2 | 11        |
| 371 | A single haplotype hyposensitive to light and requiring strong vernalization dominates <i>Arabidopsis<br/>thaliana</i> populations in Patagonia, Argentina. Molecular Ecology, 2017, 26, 3389-3404.                          | 2.0 | 11        |
| 372 | Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations. ELife, 2022, 11, .                                                                                           | 2.8 | 11        |
| 373 | Different mechanisms for <i>Arabidopsis thaliana</i> hybrid necrosis cases inferred from temperature responses. Plant Biology, 2014, 16, 1033-1041.                                                                          | 1.8 | 10        |
| 374 | Patterning the Arabidopsis embryo. Current Biology, 1993, 3, 443-445.                                                                                                                                                        | 1.8 | 9         |
| 375 | Dellaporta Miniprep for Plant DNA Isolation. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5178.                                                                                                                         | 0.2 | 9         |
| 376 | Launching eLife, Part 1. ELife, 2012, 1, e00270.                                                                                                                                                                             | 2.8 | 9         |
| 377 | <i>vcf2gwas</i> : Python API for comprehensive GWAS analysis using GEMMA. Bioinformatics, 2022, 38, 839-840.                                                                                                                 | 1.8 | 9         |
| 378 | Fixation, Embedding, and Sectioning of Plant Tissues. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4941.                                                                                                                | 0.2 | 8         |

| #   | Article                                                                                                                                                                                                             | IF        | CITATIONS    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 379 | On epigenetics and epistasis: hybrids and their non-additive interactions. EMBO Journal, 2012, 31, 249-250.                                                                                                         | 3.5       | 8            |
| 380 | Leafy Controls Meristem Identity in Arabidopsis. , 1993, , 115-122.                                                                                                                                                 |           | 8            |
| 381 | Transcript normalization and segmentation of tiling array data. Pacific Symposium on Biocomputing<br>Pacific Symposium on Biocomputing, 2008, , 527-38.                                                             | 0.7       | 8            |
| 382 | Novel homeotic genes in Drosophila melanogaster. Biochemistry and Cell Biology, 1989, 67, 393-396.                                                                                                                  | 0.9       | 7            |
| 383 | The impact of shared ancestral variation on hybrid male lethality – a 16 codon indel in the<br><i>Drosophila simulans Lhr</i> gene. Journal of Evolutionary Biology, 2008, 21, 551-555.                             | 0.8       | 7            |
| 384 | Transmission Electron Microscopy (TEM) Freeze Substitution of Plant Tissues. Cold Spring Harbor<br>Protocols, 2010, 2010, pdb.prot4959.                                                                             | 0.2       | 7            |
| 385 | Population structure and evolution of resistance to acetolactate synthase<br>( <scp>ALS</scp> )â€inhibitors in <scp><i>Amaranthus tuberculatus</i></scp> in Italy. Pest Management<br>Science, 2021, 77, 2971-2980. | 1.7       | 7            |
| 386 | Genetic Mapping by Sequencing More Precisely Detects Loci Responsible for Anaerobic Germination Tolerance in Rice. Plants, 2021, 10, 705.                                                                           | 1.6       | 7            |
| 387 | Rapid genomic convergent evolution in experimental populations of Trinidadian guppies ( <i>Poecilia) Tj ETQq1</i>                                                                                                   | 1 0.78431 | 4 rgBT /Over |
| 388 | From Tough Nuts to Touch-Me-Nots. Cell, 2004, 116, 763-764.                                                                                                                                                         | 13.5      | 6            |
| 389 | Sixty years of genome biology. Genome Biology, 2013, 14, 113.                                                                                                                                                       | 13.9      | 6            |
| 390 | Multiple Sources of Introduction of North American <i>Arabidopsis thaliana</i> from across Eurasia.<br>Molecular Biology and Evolution, 2021, 38, 5328-5344.                                                        | 3.5       | 6            |
| 391 | CRISPR-finder: A high throughput and cost-effective method to identify successfully edited<br><i>Arabidopsis thaliana</i> individuals. Quantitative Plant Biology, 2021, 2, .                                       | 0.8       | 6            |
| 392 | Cell–cell interactions: Taking cues from the neighbors. Current Biology, 1996, 6, 10-12.                                                                                                                            | 1.8       | 5            |
| 393 | Artificial MicroRNAs for Specific Gene Silencing in Rice. Methods in Molecular Biology, 2013, 956, 131-149.                                                                                                         | 0.4       | 5            |
| 394 | Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Developmental Cell, 2019, 51, 129.                                                               | 3.1       | 5            |
| 395 | A year in the life of eLife. ELife, 2013, 2, e01516.                                                                                                                                                                | 2.8       | 5            |
| 396 | Plant development: The making of a leaf. Current Biology, 1998, 8, R643-R645.                                                                                                                                       | 1.8       | 4            |

| #   | Article                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | A Tiny Helper Lightens the Maternal Load. Cell, 2006, 124, 1117-1118.                                                                                                 | 13.5 | 4         |
| 398 | Response to Comment on "A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity― Science, 2015, 347, 621-621.                             | 6.0  | 4         |
| 399 | Launching eLife, Part 2. ELife, 2012, 1, e00365.                                                                                                                      | 2.8  | 4         |
| 400 | Plant Genetic Archaeology: Whole-Genome Sequencing Reveals the Pedigree of a Classical Trisomic<br>Line. G3: Genes, Genomes, Genetics, 2015, 5, 253-259.              | 0.8  | 3         |
| 401 | Plant Development: The SECrets of Arabidopsis embryogenesis. Current Biology, 1994, 4, 1040-1042.                                                                     | 1.8  | 2         |
| 402 | Phenotypic Analysis of <i>Arabidopsis</i> Mutants: Bacterial Pathogens. Cold Spring Harbor<br>Protocols, 2009, 2009, pdb.prot4983.                                    | 0.2  | 2         |
| 403 | Recognizing the importance of new tools and resources for research. ELife, 2015, 4, .                                                                                 | 2.8  | 2         |
| 404 | Rigorous review and editorial oversight of clinical preprints. ELife, 2021, 10, .                                                                                     | 2.8  | 2         |
| 405 | eLife and early career researchers. ELife, 2013, 2, e01633.                                                                                                           | 2.8  | 2         |
| 406 | Flower development: Repressing reproduction. Current Biology, 1997, 7, R373-R375.                                                                                     | 1.8  | 1         |
| 407 | CrossLink: visualization and exploration of sequence relationships between (micro) RNAs. Nucleic<br>Acids Research, 2006, 34, W400-W404.                              | 6.5  | 1         |
| 408 | 10 years of Current Opinion in Plant Biology 1998–2007. Current Opinion in Plant Biology, 2007, 10,<br>543-545.                                                       | 3.5  | 1         |
| 409 | Revealing sequence variation patterns in rice with machine learning methods. BMC Bioinformatics, 2008, 9, .                                                           | 1.2  | 1         |
| 410 | Immunohistochemistry on Sections of Plant Tissues Using Enzyme-Coupled Avidin-Biotin Complex.<br>Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4945-pdb.prot4945. | 0.2  | 1         |
| 411 | What Developmental Biologists Can Learn from Plant Pathogens. Developmental Cell, 2011, 20, e2.                                                                       | 3.1  | 1         |
| 412 | Efficient branch-and-bound techniques for two-locus association mapping. BMC Bioinformatics, 2011, 12, .                                                              | 1.2  | 1         |
| 413 | Why I Love Genetics: Essay on Occasion of Being Awarded the GSA Medal 2016. Genetics, 2016, 204, 841-843.                                                             | 1.2  | 1         |
|     |                                                                                                                                                                       |      |           |

414 Advancing research. ELife, 2014, 3, e03980.

2.8 1

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | The molecular biology of flowering. Trends in Genetics, 1994, 10, 215.                                                                                                                                                                                   | 2.9 | Ο         |
| 416 | Plant Development: From Cell Fate to Organ Formation. Plant Cell, 2001, 13, 221.                                                                                                                                                                         | 3.1 | 0         |
| 417 | Detlef Weigel. Current Biology, 2007, 17, R227-R228.                                                                                                                                                                                                     | 1.8 | Ο         |
| 418 | Correction for Filiault <i>et al.</i> , Amino acid polymorphisms in <i>Arabidopsis</i> phytochrome B<br>cause differential responses to light. Proceedings of the National Academy of Sciences of the United<br>States of America, 2008, 105, 8482-8482. | 3.3 | 0         |
| 419 | Dissection of miRNA pathways using Arabidopsis mesophyll protoplasts. Molecular Plant, 2014, , .                                                                                                                                                         | 3.9 | Ο         |
| 420 | All in the Family: The First Whole-Genome Survey of NLR Genes. Plant Cell, 2019, 31, 1212-1213.                                                                                                                                                          | 3.1 | 0         |