
Ping Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin <i>in vivo</i> : A comparative study. Journal of Innovative Optical Health Sciences, 2022, 15, .	1.0	5
2	Selfâ€phaseâ€modulated femtosecond laser source at 1603 nm and its application to deepâ€brain <scp>3â€photon</scp> microscopy in vivo. Journal of Biophotonics, 2021, 14, e202000349.	2.3	1
3	Elliptically-Polarized Soliton Self-Frequency Shift in Isotropic Optical Fiber. Journal of Lightwave Technology, 2021, 39, 1334-1339.	4.6	5
4	Deepâ€skin multiphoton microscopy in vivo excited at 1600 nm: A comparative investigation with silicone oil and deuterium dioxide immersion. Journal of Biophotonics, 2021, 14, e202100076.	2.3	0
5	Deep-skin multiphoton microscopy of lymphatic vessels excited at the 1700-nm window in vivo. Biomedical Optics Express, 2021, 12, 6474.	2.9	2
6	In Vivo Three-Photon Microscopy of Mouse Brain Excited at the 2200 nm Window. ACS Photonics, 2021, 8, 2898-2903.	6.6	7
7	Measurement of twoâ€photon properties of indocyanine green in water and human plasma excited at the 1700â€nm window. Journal of Biophotonics, 2020, 13, e202000299.	2.3	5
8	3â€photon microscopy of myelin in mouse digital skin excited at the 1700â€nm window. Journal of Biophotonics, 2020, 13, e202000321.	2.3	4
9	Manipulating Soliton Polarization in Soliton Self-Frequency Shift and Its Application to 3-Photon Microscopy in Vivo. Journal of Lightwave Technology, 2020, 38, 2450-2455.	4.6	13
10	In vivo deep-brain blood flow speed measurement through third-harmonic generation imaging excited at the 1700-nm window. Biomedical Optics Express, 2020, 11, 2738.	2.9	12
11	In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots. Nano Letters, 2019, 19, 5260-5265.	9.1	68
12	3â€photon fluorescence imaging of sulforhodamine Bâ€labeled elastic fibers in the mouse skin in vivo. Journal of Biophotonics, 2019, 12, e201900185.	2.3	6
13	Clean optical solitons generation at the 1700 nm window in a short photonic-crystal rod. Journal of Optics (United Kingdom), 2019, 21, 035502.	2.2	0
14	Airâ€core fiber or photonicâ€crystal rod, which is more suitable for energetic femtosecond pulse generation and threeâ€photon microscopy at the 1700â€nm window?. Journal of Biophotonics, 2019, 12, e201900069.	2.3	2
15	Deepâ€brain threeâ€photon microscopy excited at 1600 nm with silicone oil immersion. Journal of Biophotonics, 2019, 12, e201800423.	2.3	5
16	Visualizing astrocytes in the deep mouse brain in vivo. Journal of Biophotonics, 2019, 12, e201800420.	2.3	21
17	Visualizing the "sandwich―structure of osteocytes in their native environment deep in bone in vivo. Journal of Biophotonics, 2019, 12, e201800360.	2.3	7
18	Refractive index and pulse broadening characterization using oil immersion and its influence on threeâ€photon microscopy excited at the 1700â€nm window. Journal of Biophotonics, 2019, 12, e201800263.	2.3	3

Ping Qiu

#	Article	IF	CITATIONS
19	High-energy polarized soliton synthesis and its application to deep-brain 3-photon microscopy in vivo. Optics Express, 2019, 27, 15309.	3.4	4
20	Deep-brain 2-photon fluorescence microscopy in vivo excited at the 1700  nm window. Optics Letters, 2019, 44, 4432.	3.3	32
21	Ex and in vivo characterization of the wavelengthâ€dependent 3â€photon action crossâ€sections of red fluorescent proteins covering the 1700â€nm window. Journal of Biophotonics, 2018, 11, e201700351.	2.3	12
22	Comparison of higherâ€order multiphoton signal generation and collection at the 1700â€nm window based on transmittance measurement of objective lenses. Journal of Biophotonics, 2018, 11, e201700121.	2.3	19
23	Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	1
24	Degradation of multiphoton signal and resolution when focusing through a planar interface with index mismatch: Analytical approximation and numerical investigation. Journal of Innovative Optical Health Sciences, 2018, 11, .	1.0	1
25	Selfâ€referenced axial chromatic dispersion measurement in multiphoton microscopy through 2â€color thirdâ€harmonic generation imaging. Journal of Biophotonics, 2018, 11, e201800071.	2.3	4
26	Wavelength Separation Tunable 2-Color Soliton Generation and Its Application to 2-Color Fluorescence Multiphoton Microscopy. Journal of Lightwave Technology, 2018, 36, 3249-3253.	4.6	3
27	Polarization multiplexing in large-mode-area waveguides and its application to signal enhancement in multiphoton microscopy. Applied Physics Letters, 2017, 110, .	3.3	10
28	Estimation of temperature rise at the focus of objective lens at the 1700 nm window. Journal of Innovative Optical Health Sciences, 2017, 10, 1650048.	1.0	3
29	Synchronization Maintenance of Synchronized Time-Lens Source in the Presence of Repetition Rate Drift of the Mode-Locked Laser for Coherent Raman Scattering Microscopy. IEEE Journal of Quantum Electronics, 2017, 53, 1-5.	1.9	0
30	Photodetection-induced relative timing jitter in synchronized time-lens source for coherent Raman scattering microscopy. Journal of Innovative Optical Health Sciences, 2017, 10, 1743003.	1.0	2
31	Sealing of Immersion Deuterium Dioxide and Its Application to Signal Maintenance for Ex-Vivo and In-Vivo Multiphoton Microscopy Excited at the 1700-nm Window. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	3
32	Order-of-magnitude multiphoton signal enhancement based on characterization of absorption spectra of immersion oils at the 1700-nm window. Optics Express, 2017, 25, 5909.	3.4	23
33	Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window. Applied Physics Letters, 2016, 108, .	3.3	25
34	Contributed Review: A new synchronized source solution for coherent Raman scattering microscopy. Review of Scientific Instruments, 2016, 87, 071501.	1.3	4
35	Comparison of Signal Detection of GaAsP and GaAs PMTs for Multiphoton Microscopy at the 1700-nm window. IEEE Photonics Journal, 2016, 8, 1-6.	2.0	10
36	Fluorescence Signal Generation Optimization by Optimal Filling of the High Numerical Aperture Objective Lens for High-Order Deep-Tissue Multiphoton Fluorescence Microscopy. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	119

Ping Qiu

#	Article	IF	CITATIONS
37	Soliton self-frequency shift and its application to multiphoton microscopy. , 2015, , .		ο
38	Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy. Journal of Biomedical Optics, 2015, 20, 055003.	2.6	2
39	Optimal compression in synchronised timeâ€lens source for CRS imaging. Electronics Letters, 2014, 50, 148-149.	1.0	6
40	Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping. Physical Review A, 2014, 90, .	2.5	11
41	Nonquadratic Spectral Phase Aberration With Quadratic Temporal Phase Modulation in an Actively Modulated Ultrafast Laser System. IEEE Journal of Quantum Electronics, 2014, 50, 639-644.	1.9	3