Niran Roongsawang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407901/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Methylotrophic Yeast Ogataea thermomethanolica TBRC 656 as a Heterologous Host for Production of an Animal Vaccine Candidate. Molecular Biotechnology, 2022, , .	2.4	Ο
2	Identification of proteins responsive to heterologous protein production in thermotolerant methylotrophic yeast <i>Ogataea thermomethanolica</i> TBRC656. Yeast, 2021, 38, 316-325.	1.7	3
3	Modulation of heterologous protein secretion in the thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC 656 by CRISPR-Cas9 system. PLoS ONE, 2021, 16, e0258005.	2.5	3
4	Multiplexed CRISPR-mediated engineering of protein secretory pathway genes in the thermotolerant methylotrophic yeast Ogataea thermomethanolica. PLoS ONE, 2021, 16, e0261754.	2.5	1
5	Protein secretion in wild-type and Othac1 mutant strains of thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC656. Molecular Biology Reports, 2020, 47, 461-468.	2.3	3
6	Anti-cancer effect of engineered recombinant interleukin 18. Advances in Clinical and Experimental Medicine, 2020, 29, 1135-1143.	1.4	11
7	Sucrose-inducible heterologous expression of phytase in high cell density cultivation of the thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiology Letters, 2019, 366, .	1.8	5
8	Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on barium ferrite magnetic microparticles. Journal of Bioscience and Bioengineering, 2019, 127, 265-272.	2.2	5
9	CRISPR-Cas9 enabled targeted mutagenesis in the thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiology Letters, 2018, 365, .	1.8	15
10	Development of tailor-made synergistic cellulolytic enzyme system for saccharification of steam exploded sugarcane bagasse. Journal of Bioscience and Bioengineering, 2018, 125, 390-396.	2.2	12
11	A novel sucrose-based expression system for heterologous proteins expression in thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiology Letters, 2018, 365, .	1.8	15
12	Hac1 function revealed by the protein expression profile of a OtHAC1 mutant of thermotolerant methylotrophic yeast Ogataea thermomethanolica. Molecular Biology Reports, 2018, 45, 1311-1319.	2.3	7
13	Purification, characterization, and stabilization of alcohol oxidase from Ogataea thermomethanolica. Protein Expression and Purification, 2018, 150, 26-32.	1.3	6
14	Optimal Design of Cost-Effective Simultaneous Saccharification and Co-fermentation Through Integrated Process Optimization. Bioenergy Research, 2017, 10, 891-902.	3.9	2
15	High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source. Applied Biochemistry and Biotechnology, 2016, 180, 1618-1634.	2.9	16
16	A Novel Potential Signal Peptide Sequence and Overexpression of ER-Resident Chaperones Enhance Heterologous Protein Secretion in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica. Applied Biochemistry and Biotechnology, 2016, 178, 710-724.	2.9	20
17	Immunologic Function and Molecular Insight of Recombinant Interleukin-18. PLoS ONE, 2016, 11, e0160321.	2.5	2
18	Enhancement of thermostable Î ² -glucosidase production in a slow methanol utilization strain of Pichia pastoris by optimization of the specific methanol supply rate. Biotechnology and Bioprocess Engineering, 2015, 20, 315-323.	2.6	4

NIRAN ROONGSAWANG

#	Article	IF	CITATIONS
19	Co-expression of Endoxylanase and Endoglucanase in Scheffersomyces stipitis and Its Application in Ethanol Production. Applied Biochemistry and Biotechnology, 2015, 177, 1690-1700.	2.9	22
20	Use of the glyceraldehyde-3-phosphate dehydrogenase promoter from a thermotolerant yeast, Pichia thermomethanolica, for heterologous gene expression, especially at elevated temperature. Annals of Microbiology, 2014, 64, 1457-1462.	2.6	13
21	Methanol-Inducible Promoter of Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica BCC16875 Potential for Production of Heterologous Protein at High Temperatures. Current Microbiology, 2014, 69, 143-148.	2.2	17
22	Improvement of recombinant endoglucanase produced in Pichia pastoris KM71 through the use of synthetic medium for inoculum and pH control of proteolysis. Journal of Bioscience and Bioengineering, 2013, 116, 193-198.	2.2	27
23	Heterologous protein expression in Pichia thermomethanolica BCC16875, a thermotolerant methylotrophic yeast and characterization of N-linked glycosylation in secreted protein. FEMS Microbiology Letters, 2012, 334, 127-134.	1.8	13
24	Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants. International Journal of Molecular Sciences, 2011, 12, 141-172.	4.1	204
25	Biosynthetic Studies and Genetic Engineering of Pactamycin Analogs with Improved Selectivity toward Malarial Parasites. Chemistry and Biology, 2011, 18, 425-431.	6.0	69
26	A Truncated Form of SpoT, Including the ACT Domain, Inhibits the Production of Cyclic Lipopeptide Arthrofactin, and Is Associated with Moderate Elevation of Guanosine 3′,5′-Bispyrophosphate Level inPseudomonassp. MIS38. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1880-1888.	1.3	0
27	Coexpression of fungal phytase and xylanase utilizing the cis-acting hydrolase element in Pichia pastoris. FEMS Yeast Research, 2010, 10, 909-916.	2.3	16
28	Identification and Characterization of the Genes Responsible for the Production of the Cyclic Lipopeptide Arthrofactin by <i>Pseudomonas</i> sp. MIS38. Bioscience, Biotechnology and Biochemistry, 2010, 74, 992-999.	1.3	27
29	Deciphering Pactamycin Biosynthesis and Engineered Production of New Pactamycin Analogues. ChemBioChem, 2009, 10, 2253-2265.	2.6	77
30	Production of Sophorolipid Biosurfactant by <i>Pichia anomala</i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 2061-2068.	1.3	85
31	Functional Analysis of A Pyoverdine Synthetase from <i>Pseudomonas</i> sp. MIS38. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2002-2009.	1.3	6
32	In Vivo Characterization of Tandem C-Terminal Thioesterase Domains in Arthrofactin Synthetase. ChemBioChem, 2007, 8, 501-512.	2.6	31
33	Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases. FEMS Microbiology Letters, 2005, 252, 143-151.	1.8	45
34	Cloning and Characterization of the Gene Cluster Encoding Arthrofactin Synthetase from Pseudomonas sp. MIS38. Chemistry and Biology, 2003, 10, 869-880.	6.0	108
35	Production and Characterization of Biosurfactants fromBacillus licheniformisF2.2. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1239-1244.	1.3	88
36	Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles, 2002, 6, 499-506.	2.3	103

#	Article	IF	CITATIONS
37	Surface cysteine to serine substitutions in IL-18 reduce aggregation and enhance activity. PeerJ, 0, 10, e13626.	2.0	2