Jinwei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407748/publications.pdf

Version: 2024-02-01

257450 254184 2,401 44 24 43 h-index citations g-index papers 47 47 47 2451 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural basis for substrate loading in bacterial RNA polymerase. Nature, 2007, 448, 163-168.	27.8	333
2	Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 2017, 541, 242-246.	27.8	251
3	A Central Role of the RNA Polymerase Trigger Loop in Active-Site Rearrangement during Transcriptional Pausing. Molecular Cell, 2007, 27, 406-419.	9.7	189
4	<i>RNA-Puzzles</i> Round II: assessment of RNA structure prediction programs applied to three large RNA structures. Rna, 2015, 21, 1066-1084.	3.5	161
5	Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry, 2010, 49, 9123-9131.	2.5	140
6	Role of the RNA polymerase trigger loop in catalysis and pausing. Nature Structural and Molecular Biology, 2010, 17, 99-104.	8.2	138
7	Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature, 2013, 500, 363-366.	27.8	136
8	A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure. Trends in Biochemical Sciences, 2016, 41, 293-310.	7.5	113
9	Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature, 2015, 522, 368-372.	27.8	95
10	The tRNA Elbow in Structure, Recognition and Evolution. Life, 2016, 6, 3.	2.4	63
11	Dramatic Improvement of Crystals of Large RNAs by Cation Replacement and Dehydration. Structure, 2014, 22, 1363-1371.	3.3	52
12	Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions. Nature Structural and Molecular Biology, 2019, 26, 1094-1105.	8.2	52
13	YbxF and YlxQ are bacterial homologs of L7Ae and bind K-turns but not K-loops. Rna, 2012, 18, 759-770.	3.5	49
14	Direct Evaluation of tRNA Aminoacylation Status by the T-Box Riboswitch Using tRNA-mRNA Stacking and Steric Readout. Molecular Cell, 2014, 55, 148-155.	9.7	49
15	The search for a PKR code—differential regulation of protein kinase R activity by diverse RNA and protein regulators. Rna, 2019, 25, 539-556.	3.5	48
16	New molecular engineering approaches for crystallographic studies of large RNAs. Current Opinion in Structural Biology, 2014, 26, 9-15.	5.7	46
17	Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Nucleic Acids Research, 2014, 42, 12707-12721.	14.5	43
18	Structure and mechanism ofÂtheÂTâ€box riboswitches. Wiley Interdisciplinary Reviews RNA, 2015, 6, 419-433.	6.4	38

#	Article	IF	Citations
19	High-fidelity SaCas9 identified by directional screening in human cells. PLoS Biology, 2020, 18, e3000747.	5.6	38
20	Crystal structure of an adenovirus virus-associated RNA. Nature Communications, 2019, 10, 2871.	12.8	36
21	Interaction between the tRNA-Binding and C-Terminal Domains of Yeast Gcn2 Regulates Kinase Activity In Vivo. PLoS Genetics, 2015, 11, e1004991.	3.5	35
22	Global analysis of riboswitches by small-angle X-ray scattering and calorimetry. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1020-1029.	1.9	34
23	Structural basis of R-loop recognition by the S9.6 monoclonal antibody. Nature Communications, 2022, 13, 1641.	12.8	32
24	High-affinity recognition of specific tRNAs by an mRNA anticodon-binding groove. Nature Structural and Molecular Biology, 2019, 26, 1114-1122.	8.2	28
25	Structural Insights into RNA Dimerization: Motifs, Interfaces and Functions. Molecules, 2020, 25, 2881.	3.8	28
26	Unboxing the Tâ€box riboswitches—A glimpse into multivalent and multimodal <scp>RNA–RNA</scp> interactions. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1600.	6.4	23
27	HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization. Cell Host and Microbe, 2021, 29, 1421-1436.e7.	11.0	22
28	Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors. Nucleic Acids Research, 2017, 45, 10242-10258.	14.5	21
29	Trying on tRNA for Size: RNase P and the T-box Riboswitch as Molecular Rulers. Biomolecules, 2016, 6, 18.	4.0	17
30	An evolving tale of two interacting RNAsâ€"themes and variations of the Tâ€box riboswitch mechanism. IUBMB Life, 2019, 71, 1167-1180.	3.4	15
31	Human cell based directed evolution of adenine base editors with improved efficiency. Nature Communications, 2021, 12, 5897.	12.8	15
32	Brothers in arms: emerging roles of RNA epigenetics in DNA damage repair. Cell and Bioscience, 2017, 7, 24.	4.8	12
33	Substrate Loading, Nucleotide Addition, and Translocation by RNA Polymerase. RSC Biomolecular Sciences, 2009, , 206-235.	0.4	12
34	A Flexible, Scalable Method for Preparation of Homogeneous Aminoacylated tRNAs. Methods in Enzymology, 2014, 549, 105-113.	1.0	9
35	Inhibition of RNA Polymerase by Streptolydigin: No Cycling Allowed. Cell, 2005, 122, 494-496.	28.9	7
36	Interplay between Host tRNAs and HIV-1: A Structural Perspective. Viruses, 2021, 13, 1819.	3.3	6

#	Article	lF	CITATIONS
37	Cooperativity and Interdependency between RNA Structure and RNA–RNA Interactions. Non-coding RNA, 2021, 7, 81.	2.6	5
38	Post-crystallization Improvement of RNA Crystal Diffraction Quality. Methods in Molecular Biology, 2015, 1316, 13-24.	0.9	2
39	Lineage-specific insertions in T-box riboswitches modulate antibiotic binding and action. Nucleic Acids Research, 2022, , .	14.5	2
40	Improving RNA Crystal Diffraction Quality by Postcrystallization Treatment. Methods in Molecular Biology, 2021, 2323, 25-37.	0.9	1
41	Post-crystallization Improvement of RNA Crystals by Synergistic Ion Exchange and Dehydration. Bio-protocol, 2015, 5, .	0.4	1
42	Post-crystallization Improvement of RNA Crystals by Synergistic Ion Exchange and Dehydration. Bio-protocol, 2015, 5, .	0.4	1
43	Rational engineering enables co-crystallization and structural determination of the HIV-1 matrix-tRNA complex. STAR Protocols, 2022, 3, 101056.	1.2	1
44	The long and short of it: long noncoding RNAs in neural development and diseases. Frontiers in Bioscience, 2021, 26, 258.	2.1	0