
Suneha Goswami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2015, 15, 323-348.	3.5	121
2	Role of ATPâ€binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiologia Plantarum, 2021, 171, 785-801.	5.2	81
3	Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (<i>Triticum aestivum</i> L.). OMICS A Journal of Integrative Biology, 2015, 19, 632-647.	2.0	50
4	Characterization of novel heat-responsive transcription factor (TaHSFA6e) gene involved in regulation of heat shock proteins (HSPs) — A key member of heat stress-tolerance network of wheat. Journal of Biotechnology, 2018, 279, 1-12.	3.8	45
5	Identification of Putative RuBisCo Activase (TaRca1)—The Catalytic Chaperone Regulating Carbon Assimilatory Pathway in Wheat (Triticum aestivum) under the Heat Stress. Frontiers in Plant Science, 2016, 7, 986.	3.6	38
6	Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Journal of Plant Biochemistry and Biotechnology, 2013, 22, 16-26.	1.7	30
7	Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of developing wheat (Triticum aestivum) grain under the heat stress. Journal of Plant Biochemistry and Biotechnology, 2015, 24, 441-452.	1.7	29
8	Quantitative proteomic analysis reveals novel stress-associated active proteins (SAAPs) and pathways involved in modulating tolerance of wheat under terminal heat. Functional and Integrative Genomics, 2019, 19, 329-348.	3.5	29
9	Ascorbic acid at pre-anthesis modulate the thermotolerance level of wheat (Triticum aestivum) pollen under heat stress. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 293-306.	1.7	28
10	Biochemical Defense Response: Characterizing the Plasticity of Source and Sink in Spring Wheat under Terminal Heat Stress. Frontiers in Plant Science, 2017, 8, 1603.	3.6	28
11	Interference in plant defense and development by non-structural protein NSs of Groundnut bud necrosis virus. Virus Research, 2012, 163, 368-373.	2.2	26
12	RuBisCo activase—a catalytic chaperone involved in modulating the RuBisCo activity and heat stress-tolerance in wheat. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 63-75.	1.7	26
13	Characterization of differentially expressed stress-associated proteins in starch granule development under heat stress in wheat (Triticum aestivum L.). Indian Journal of Biochemistry and Biophysics, 2013, 50, 126-38.	0.0	25
14	Salicylic acid alleviates the heat stress-induced oxidative damage of starch biosynthesis pathway by modulating the expression of heat-stable genes and proteins in wheat (Triticum aestivum). Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	23
15	Lipase – The fascinating dynamics of enzyme in seed storage and germination – A real challenge to pearl millet. Food Chemistry, 2021, 361, 130031.	8.2	23
16	Rancidity Matrix: Development of Biochemical Indicators for Analysing the Keeping Quality of Pearl Millet Flour. Food Analytical Methods, 2020, 13, 2147-2164.	2.6	21
17	MAPK Enzymes: a ROS Activated Signaling Sensors Involved in Modulating Heat Stress Response, Tolerance and Grain Stability of Wheat under Heat Stress. 3 Biotech, 2020, 10, 380.	2.2	20
18	Nitric oxide triggered defense network in wheat: Augmenting tolerance and grain-quality related traits under heat-induced oxidative damage. Environmental and Experimental Botany, 2019, 158, 189-204.	4.2	18

Suneha Goswami

#	Article	IF	CITATIONS
19	Thermal treatments reduce rancidity and modulate structural and digestive properties of starch in pearl millet flour. International Journal of Biological Macromolecules, 2022, 195, 207-216.	7.5	18
20	Exploring the heat-responsive chaperones and microsatellite markers associated with terminal heat stress tolerance in developing wheat. Functional and Integrative Genomics, 2017, 17, 621-640.	3.5	15
21	Starch molecular configuration and starch-sugar homeostasis: Key determinants of sweet sensory perception and starch hydrolysis in pearl millet (Pennisetum glaucum). International Journal of Biological Macromolecules, 2021, 183, 1087-1095.	7.5	15
22	Exogenous application of putrescine at pre-anthesis enhances the thermotolerance of wheat (Triticum aestivum L.). Indian Journal of Biochemistry and Biophysics, 2014, 51, 396-406.	0.0	15
23	SSH Analysis of Endosperm Transcripts and Characterization of Heat Stress Regulated Expressed Sequence Tags in Bread Wheat. Frontiers in Plant Science, 2016, 7, 1230.	3.6	14
24	Heterologous expression and characterization of novel manganese superoxide dismutase (Mn-SOD) – A potential biochemical marker for heat stress-tolerance in wheat (Triticum aestivum). International Journal of Biological Macromolecules, 2020, 161, 1029-1039.	7.5	13
25	Iron and Zinc at a cross-road: A trade-off between micronutrients and anti-nutritional factors in pearl millet flour for enhancing the bioavailability. Journal of Food Composition and Analysis, 2022, 111, 104591.	3.9	13
26	The Stress of Suicide: Temporal and Spatial Expression of Putative Heat Shock Protein 70 Protect the Cells from Heat Injury in Wheat (Triticum aestivum). Journal of Plant Growth Regulation, 2016, 35, 65-82.	5.1	12
27	Gamma irradiation protect the developing wheat endosperm from oxidative damage by balancing the trade-off between the defence network and grains quality. Ecotoxicology and Environmental Safety, 2019, 174, 637-648.	6.0	7
28	Characterization of the starch synthase under terminal heat stress and its effect on grain quality of wheat. 3 Biotech, 2020, 10, 531.	2.2	7
29	Weighted gene co-expression analysis for identification of key genes regulating heat stress in wheat. Cereal Research Communications, 2021, 49, 73-81.	1.6	7
30	Nutritional supremacy of pearl- and foxtail millets: assessing the nutrient density, protein stability and shelf-life of flours in millets and cereals for developing nutri-stable foods. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 837-852.	1.7	7
31	miR430: the novel heat-responsive microRNA identified from miRNome analysis in wheat (Triticum) Tj ETQq1 1 0.	.784314 rş 0.8	gBT /Overloci
32	Grain phenolics: critical role in quality, storage stability and effects of processing in major grain crops—a concise review. European Food Research and Technology, 2022, 248, 2197-2213.	3.3	6
33	Induction of cell death by tospoviral protein NSs and the motif critical for cell death does not control RNA silencing suppression activity. Virology, 2017, 508, 108-117.	2.4	4
34	In planta silencing of NSs and Hc-Pro through RNAi constructs: to develop durable resistance. Indian Journal of Plant Physiology, 2017, 22, 577-586.	0.8	3
35	NO protect the wheat embryo from oxidative damage by triggering the biochemical defence network and amylolytic activity. Plant Physiology Reports, 2019, 24, 35-45.	1.5	3
36	Protection from terminal heat stress: a trade-off between heat-responsive transcription factors (HSFs) and stress-associated genes (SAGs) under changing environment. Cereal Research Communications, 2021, 49, 227-234.	1.6	3

#	Article	IF	CITATIONS
37	Characterization of biochemical indicators and metabolites linked with rancidity and browning of pearl millet flour during storage. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 121-131.	1.7	1
38	Insight into Genetic Mechanism and CDPK-Based Signalling Network Underlying Balanced Source to Sink Carbon Transfer in Wheat Under Multiple Stresses. Journal of Plant Growth Regulation, 0, , .	5.1	0