
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407603/publications.pdf Version: 2024-02-01

DON HADDIS

#	Article	IF	CITATIONS
1	Distributed situation awareness in dynamic systems: theoretical development and application of an ergonomics methodology. Ergonomics, 2006, 49, 1288-1311.	2.1	370
2	Seven HCI Grand Challenges. International Journal of Human-Computer Interaction, 2019, 35, 1229-1269.	4.8	273
3	Routes to failure: Analysis of 41 civil aviation accidents from the Republic of China using the human factors analysis and classification system. Accident Analysis and Prevention, 2008, 40, 426-434.	5.7	120
4	Using SHERPA to predict design-induced error on the flight deck. Aerospace Science and Technology, 2005, 9, 525-532.	4.8	89
5	Driving automation: learning from aviation about design philosophies. International Journal of Vehicle Design, 2007, 45, 323.	0.3	87
6	Risk Perception and Risk-Taking Behavior of Construction Site Dumper Drivers. International Journal of Occupational Safety and Ergonomics, 2010, 16, 55-67.	1.9	86
7	Predicting pilot error: Testing a new methodology and a multi-methods and analysts approach. Applied Ergonomics, 2009, 40, 464-471.	3.1	84
8	The future flight deck: Modelling dual, single and distributed crewing options. Applied Ergonomics, 2016, 53, 331-342.	3.1	66
9	Comparison of NASA-TLX scale, modified Cooper–Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks. Ergonomics, 2019, 62, 246-254.	2.1	57
10	A human entred design agenda for the development of single crew operated commercial aircraft. Aircraft Engineering and Aerospace Technology, 2007, 79, 518-526.	0.8	56
11	Fighter pilots' heart rate, heart rate variation and performance during instrument approaches. Ergonomics, 2016, 59, 1344-1352.	2.1	55
12	Distributed situation awareness in an Airborne Warning and Control System: application of novel ergonomics methodology. Cognition, Technology and Work, 2008, 10, 221-229.	3.0	48
13	Fighter pilots' heart rate, heart rate variation and performance during an instrument flight rules proficiency test. Applied Ergonomics, 2016, 56, 213-219.	3.1	48
14	Computer-Based Simulation as an Adjunct to Ab Initio Flight Training. The International Journal of Aviation Psychology, 1998, 8, 261-276.	0.7	45
15	Pilot error and its relationship with higher organizational levels: HFACS analysis of 523 accidents. Aviation, Space, and Environmental Medicine, 2006, 77, 1056-61.	0.5	42
16	Aviation as a system of systems: Preface to the special issue of human factors in aviation. Ergonomics, 2010, 53, 145-148.	2.1	40
17	The relationship between manual handling performance and recent flying experience in air transport pilots. Ergonomics, 2010, 53, 268-277.	2.1	36
18	Predicting design induced pilot error using HET (human error template) – A new formal human error identification method for flight decks. Aeronautical Journal, 2006, 110, 107-115.	1.6	34

#	Article	IF	CITATIONS
19	An extension of the Human Factors Analysis and Classification System for use in open systems. Theoretical Issues in Ergonomics Science, 2011, 12, 108-128.	1.8	33
20	Spot the difference: Operational event sequence diagrams as a formal method for work allocation in the development of single-pilot operations for commercial aircraft. Ergonomics, 2015, 58, 1773-1791.	2.1	32
21	A psychophysiological approach to the assessment of work underload. Ergonomics, 1993, 36, 1035-1042.	2.1	27
22	A comparative survey of the utility of cross-cockpit linkages and autoflight systems' backfeed to the control inceptors of commercial aircraft. Ergonomics, 1998, 41, 1462-1477.	2.1	26
23	Evaluating the transfer of technology between application domains: a critical evaluation of the human component in the system. Technology in Society, 2004, 26, 551-565.	9.4	26
24	The influence of human factors on operational efficiency. Aircraft Engineering and Aerospace Technology, 2006, 78, 20-25.	0.8	24
25	Dissociation Between Mental Workload, Performance, and Task Awareness in Pilots of High Performance Aircraft. IEEE Transactions on Human-Machine Systems, 2019, 49, 1-9.	3.5	23
26	Identifying Training Deficiencies in Military Pilots by Applying the Human Factors Analysis and Classification System. International Journal of Occupational Safety and Ergonomics, 2013, 19, 3-18.	1.9	20
27	The Evaluation of the Effect of a short Aeronautical Decision-Making Training Program for Military Pilots. The International Journal of Aviation Psychology, 2008, 18, 135-152.	0.7	16
28	Editorial: Ergonomics and Human Factors in Aviation. Ergonomics, 2019, 62, 131-137.	2.1	16
29	Live–virtual–constructive simulation for testing and evaluation of air combat tactics, techniques, and procedures, Part 1: assessment framework. Journal of Defense Modeling and Simulation, 2021, 18, 285-293.	1.7	15
30	Weight watchers: NASA-TLX weights revisited. Theoretical Issues in Ergonomics Science, 2022, 23, 725-748.	1.8	15
31	Development of a bespoke human factors taxonomy for gliding accident analysis and its revelations about highly inexperienced UK glider pilots. Ergonomics, 2010, 53, 294-303.	2.1	14
32	The use of operational event sequence diagrams and work domain analysis techniques for the specification of the crewing configuration of a single-pilot commercial aircraft. Cognition, Technology and Work, 2017, 19, 289-302.	3.0	14
33	Using Neural Networks to predict HFACS unsafe acts from the pre-conditions of unsafe acts. Ergonomics, 2019, 62, 181-191.	2.1	14
34	Ripples in a Pond: An Open System Model of the Evolution of Safety Culture. International Journal of Occupational Safety and Ergonomics, 2006, 12, 3-15.	1.9	13
35	Evaluating the transfer of technology between application domains: a critical evaluation of the human component in the system. Technology in Society, 2004, 26, 551-565.	9.4	12
36	The development of a multidimensional scale to evaluate motor vehicle dynamic qualities. Ergonomics, 2005, 48, 964-982.	2.1	11

#	Article	IF	CITATIONS
37	Crosswind Landings in General Aviation: A Modified Method of Reporting Wing Information to the Pilot. The International Journal of Aviation Psychology, 2007, 17, 353-370.	0.7	11
38	Team situation awareness accuracy measurement technique for simulated air combat - Curvilinear relationship between awareness and performance. Applied Ergonomics, 2021, 96, 103473.	3.1	11
39	Safety Management Practices Hindering the Development of Safety Performance Indicators in Aviation Service Providers. Aviation Psychology and Applied Human Factors, 2017, 7, 95-106.	0.4	11
40	An Input–Process–Output Model of Pilot Core Competencies. Aviation Psychology and Applied Human Factors, 2017, 7, 78-85.	0.4	11
41	Cockpit Design and Cross-Cultural Issues Underlying Failures in Crew Resource Management. Aviation, Space, and Environmental Medicine, 2008, 79, 537-538.	0.5	10
42	Combining Control Input with Flight Path Data to Evaluate Pilot Performance in Transport Aircraft. Aviation, Space, and Environmental Medicine, 2008, 79, 1061-1064.	0.5	10
43	Measurement of team performance in air combat – have we been underperforming?. Theoretical Issues in Ergonomics Science, 2021, 22, 338-359.	1.8	10
44	Development of a generic activities model of command and control. Cognition, Technology and Work, 2008, 10, 209-220.	3.0	9
45	Live–virtual–constructive simulation for testing and evaluation of air combat tactics, techniques, and procedures, Part 2: demonstration of the framework. Journal of Defense Modeling and Simulation, 2021, 18, 295-308.	1.7	9
46	Workload benefits of colour coded head-up flight symbology during high workload flight. Displays, 2020, 65, 101973.	3.7	9
47	Modelling and analysis of single pilot operations in commercial aviation. , 2014, , .		8
48	Pilot competencies as components of a dynamic humanâ€machine system. Human Factors and Ergonomics in Manufacturing, 2019, 29, 466-477.	2.7	8
49	Passenger Attitudes to Flying on a Single-Pilot Commercial Aircraft. Aviation Psychology and Applied Human Factors, 2019, 9, 77-85.	0.4	8
50	The Effect of Low Blood Alcohol Levels on Pilot Performance in a Series of Simulated Approach and Landing Trials. The International Journal of Aviation Psychology, 1992, 2, 271-280.	0.7	7
51	Network Re-analysis of Boeing 737 Accident at Kegworth Using Different Potential Crewing Configurations for a Single Pilot Commercial Aircraft. Lecture Notes in Computer Science, 2018, , 572-582.	1.3	7
52	A Psychometric Approach to the Development of a Multidimensional Scale to Assess Aircraft Handling Qualities. The International Journal of Aviation Psychology, 2000, 10, 343-362.	0.7	5
53	Effects of Low Blood Alcohol Levels On Pilot's Prioritization of Tasks During a Radio Navigation Task. The International Journal of Aviation Psychology, 1994, 4, 349-358.	0.7	4
54	The Human Factors of Fully Automatic Flight. Measurement and Control, 2003, 36, 184-187.	1.8	4

#	Article	IF	CITATIONS
55	Doing more with fewer people: Human Factors contributions on the road to efficiency and productivity. Cognition, Technology and Work, 2017, 19, 207-209.	3.0	4
56	Estimating the required number of Harbour Pilots to support airline operations of a single pilot commercial aircraft at a UK regional airport. Aeronautical Journal, 2022, 126, 1497-1509.	1.6	4
57	Contributions of Industrial/Organizational Psychology to Safety in Commercial Aircraft. , 2006, , 177-219.		3
58	Human factors integration in defence: preface. Cognition, Technology and Work, 2008, 10, 169-172.	3.0	3
59	Development of a bespoke human factors taxonomy for gliding accident analysis and its revelations about highly inexperienced UK glider pilots. Ergonomics, 2009, 52, 1009-1018.	2.1	3
60	Perceptual control and feedback control in the analysis of complex tasks. Theoretical Issues in Ergonomics Science, 2014, 15, 505-516.	1.8	3
61	The Differences of Aviation Human Factors between Individualism and Collectivism Culture. Lecture Notes in Computer Science, 2009, , 723-730.	1.3	3
62	What can be done versus what should be done: a critical evaluation of the transfer of human engineering solutions between application domains. , 2017, , 339-346.		3
63	Accident Rates for Novice Glider Pilots vs. Pilots with Experience. Aviation, Space, and Environmental Medicine, 2007, 78, 1155-1158.	0.5	2
64	Rule Fragmentation in the Airworthiness Regulations: A Human Factors Perspective. Lecture Notes in Computer Science, 2011, , 546-555.	1.3	2
65	The human factors that relate to technological developments in aviation. , 2012, , 132-154.		2
66	Taking to the Skies: Developing a Dedicated MSc Course in Aviation Human Factors. Advances in Intelligent Systems and Computing, 2019, , 57-61.	0.6	2
67	The Application of Human Error Template (HET) for Redesigning Standard Operational Procedures in Aviation Operations. Lecture Notes in Computer Science, 2009, , 547-553.	1.3	2
68	Distributed Cognition in Flight Operations. Lecture Notes in Computer Science, 2013, , 125-133.	1.3	2
69	A Design and Training Agenda for the Next Generation of Commercial Aircraft Flight Deck. Lecture Notes in Computer Science, 2009, , 529-536.	1.3	2
70	Rule Fragmentation in the Airworthiness Regulations. Aviation Psychology and Applied Human Factors, 2011, 1, 75-86.	0.4	2
71	Measurement of Pilot Opinion When Assessing Aircraft Handling Qualities. Measurement and Control, 2000, 33, 239-243.	1.8	1
72	Transport in the 21st Century: The application of human factors to future user needs. Applied Ergonomics, 2016, 53, 295-297.	3.1	1

#	Article	IF	CITATIONS
73	Using neural networks to predict high-risk flight environments from accident and incident data. International Journal of Occupational Safety and Ergonomics, 2022, 28, 1204-1212.	1.9	1
74	The Future Flight Deck. Lecture Notes in Computer Science, 2017, , 222-230.	1.3	1
75	A Socio-Technical Systems Analysis of Increasing Operational Efficiency: Why Human Factors Solutions Developed without Reference to the Wider Context May Not Work. Measurement and Control, 2005, 38, 235-238.	1.8	Ο
76	Instructor Perceptions of the Accident Likelihood Faced by Recently Trained Glider Pilots. Aviation, Space, and Environmental Medicine, 2011, 82, 1093-1097.	0.5	0
77	Dual Pilot and Single Pilot Operations – Hierarchical Task Decomposition Analysis of Doing More with Less. Lecture Notes in Computer Science, 2015, , 365-376.	1.3	Ο