
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407515/publications.pdf Version: 2024-02-01

THOMAS R RDÃ1//CK

#	Article	IF	CITATIONS
1	Isolation and Investigation of Natural Rare Earth Metal Chelating Agents From Calothrix brevissima - A Step Towards Unraveling the Mechanisms of Metal Biosorption. Frontiers in Bioengineering and Biotechnology, 2022, 10, 833122.	4.1	9
2	FTIR differentiation based on genomic DNA for species identification of Shigella isolates from stool samples. Scientific Reports, 2022, 12, 2780.	3.3	8
3	Towards an understanding of oleate hydratases and their application in industrial processes. Microbial Cell Factories, 2022, 21, 58.	4.0	13
4	Biotechnological potential and initial characterization of two novel sesquiterpene synthases from Basidiomycota Coniophora puteana for heterologous production of Î-cadinol. Microbial Cell Factories, 2022, 21, 64.	4.0	9
5	Efficient Green Light Acclimation of the Green Algae Picochlorum sp. Triggering Geranylgeranylated Chlorophylls. Frontiers in Bioengineering and Biotechnology, 2022, 10, 885977.	4.1	4
6	Non-invasive Raman spectroscopy for time-resolved in-line lipidomics. RSC Advances, 2021, 11, 28565-28572.	3.6	4
7	Life cycle greenhouse gas emissions of microalgal fuel from thin-layer cascades. Bioprocess and Biosystems Engineering, 2021, 44, 2399-2406.	3.4	4
8	A Newly Designed Automatically Controlled, Sterilizable Flat Panel Photobioreactor for Axenic Algae Culture. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697354.	4.1	13
9	Systems Biology Engineering of the Pantothenate Pathway to Enhance 3HB Productivity in Escherichia coli. Biotechnology and Bioprocess Engineering, 2021, 26, 621-629.	2.6	3
10	Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active-Site Glutamic Acid. Antimicrobial Agents and Chemotherapy, 2021, 65, e0093621.	3.2	7
11	Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology. Microbial Cell Factories, 2021, 20, 205.	4.0	9
12	Oleaginous yeasts- substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microbial Cell Factories, 2021, 20, 220.	4.0	27
13	Greener aromatic antioxidants for aviation and beyond. Sustainable Energy and Fuels, 2020, 4, 2153-2163.	4.9	4
14	Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus. Analytical and Bioanalytical Chemistry, 2020, 412, 449-462.	3.7	11
15	Towards a sustainable generation of pseudopterosin-type bioactives. Green Chemistry, 2020, 22, 6033-6046.	9.0	9
16	Structure and mechanism of potent bifunctional β-lactam- and homoserine lactone-degrading enzymes from marine microorganisms. Scientific Reports, 2020, 10, 12882.	3.3	13
17	PtXâ€Plus: Synergies Through Coupling of PtX Facilities with a Biorefinery. Chemie-Ingenieur-Technik, 2020, 92, 1797-1802.	0.8	1
18	The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. Journal of the American Chemical Society, 2020, 142, 21562-21574.	13.7	20

#	Article	IF	CITATIONS
19	Microbial lipid production by oleaginous yeasts grown on Scenedesmus obtusiusculus microalgae biomass hydrolysate. Bioprocess and Biosystems Engineering, 2020, 43, 1629-1638.	3.4	27
20	Additive Analytics: Easy Transformation of Low-Cost Fused Deposition Modeling Three-Dimensional Printers for HPTLC Sample Application. ACS Omega, 2020, 5, 11147-11150.	3.5	5
21	Towards high-throughput optimization of microbial lipid production: from strain development to process monitoring. Sustainable Energy and Fuels, 2020, 4, 5958-5969.	4.9	6
22	Exploring the catalytic cascade of cembranoid biosynthesis by combination of genetic engineering and molecular simulations. Computational and Structural Biotechnology Journal, 2020, 18, 1819-1829.	4.1	3
23	High-Density Microalgae Cultivation in Open Thin-Layer Cascade Photobioreactors with Water Recycling. Applied Sciences (Switzerland), 2020, 10, 3883.	2.5	15
24	Understanding the role of active site residues in CotB2 catalysis using a cluster model. Beilstein Journal of Organic Chemistry, 2020, 16, 50-59.	2.2	11
25	Enzymatic Modification of Native Chitin and Conversion to Specialty Chemical Products. Marine Drugs, 2020, 18, 93.	4.6	42
26	Terbium Excitation Spectroscopy as a Detection Method for Chromatographic Separation of Lanthanide-Binding Biomolecules. ACS Omega, 2020, 5, 27050-27056.	3.5	1
27	Biogas yields and composition from oil-extracted halophilic algae residues in conventional biogas plants operated at high salinities. Bioprocess and Biosystems Engineering, 2019, 42, 1915-1922.	3.4	5
28	Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids. Microbial Cell Factories, 2019, 18, 163.	4.0	19
29	Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein Journal of Organic Chemistry, 2019, 15, 2355-2368.	2.2	17
30	Species disparity response to mutagenesis of marine yeasts for the potential production of biodiesel. Biotechnology for Biofuels, 2019, 12, 129.	6.2	6
31	A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents. Energy and Environmental Science, 2019, 12, 2717-2732.	30.8	45
32	Catalytic Decomposition of the Oleaginous Yeast <i>Cutaneotrichosporon Oleaginosus</i> and Subsequent Biocatalytic Conversion of Liberated Free Fatty Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 6531-6540.	6.7	4
33	Multi-Factorial-Guided Media Optimization for Enhanced Biomass and Lipid Formation by the Oleaginous Yeast Cutaneotrichosporon oleaginosus. Frontiers in Bioengineering and Biotechnology, 2019, 7, 54.	4.1	42
34	Editorial: Industrial Biotechnology Forum (http://ibf-conference.org). Frontiers in Bioengineering and Biotechnology, 2019, 7, 434.	4.1	0
35	GFP Scaffold-Based Engineering for the Production of Unbranched Very Long Chain Fatty Acids in Escherichia coli With Oleic Acid and Cerulenin Supplementation. Frontiers in Bioengineering and Biotechnology, 2019, 7, 408.	4.1	4
36	Validated numerical fluid simulation of a thinâ€layer cascade photobioreactor in OpenFOAM. Engineering in Life Sciences, 2019, 19, 97-103.	3.6	7

#	Article	IF	CITATIONS
37	Microalgae a Superior Source of Folates: Quantification of Folates in Halophile Microalgae by Stable Isotope Dilution Assay. Frontiers in Bioengineering and Biotechnology, 2019, 7, 481.	4.1	24
38	Molecular dynamics study of taxadiene synthase catalysis. Journal of Computational Chemistry, 2018, 39, 1215-1225.	3.3	18
39	Investigation of vertical mixing in thin-layer cascade reactors using computational fluid dynamics. Chemical Engineering Research and Design, 2018, 132, 436-444.	5.6	15
40	Carbon Capture and Sustainable Utilization by Algal Polyacrylonitrile Fiber Production: Process Design, Techno-Economic Analysis, and Climate Related Aspects. Industrial & Engineering Chemistry Research, 2018, 57, 7922-7933.	3.7	22
41	A Seagrassâ€Based Biorefinery for Generation of Singleâ€Cell Oils for Biofuel and Oleochemical Production. Energy Technology, 2018, 6, 1026-1038.	3.8	18
42	Modeling Microalgae Productivity in Industrial-Scale Vertical Flat Panel Photobioreactors. Environmental Science & Technology, 2018, 52, 5490-5498.	10.0	21
43	<i>Rhodococcus erythropolis</i> Oleate Hydratase: a New Member in the Oleate Hydratase Family Tree—Biochemical and Structural Studies. ChemCatChem, 2018, 10, 407-414.	3.7	29
44	Studies on the scale-up of biomass production with Scenedesmus spp. in flat-plate gas-lift photobioreactors. Bioprocess and Biosystems Engineering, 2018, 41, 213-220.	3.4	16
45	From microbial upcycling to biology-oriented synthesis: combining whole-cell production and chemo-enzymatic functionalization for sustainable taxanoid delivery. Green Chemistry, 2018, 20, 5374-5384.	9.0	11
46	Identification of sesquiterpene synthases from the Basidiomycota Coniophora puteana for the efficient and highly selective β-copaene and cubebol production in E. coli. Microbial Cell Factories, 2018, 17, 164.	4.0	37
47	Batch and Continuous Biogas Fermentation of the Fresh Water Algae Chlorella Vulgaris-Detailed Process Analysis. Journal of Bioprocessing & Biotechniques, 2018, 08, .	0.2	1
48	Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources. Frontiers in Bioengineering and Biotechnology, 2018, 6, 200.	4.1	19
49	Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nature Communications, 2018, 9, 3971.	12.8	57
50	Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. Green Chemistry, 2018, 20, 2637-2650.	9.0	29
51	ChiBio: An Integrated Bio-refinery for Processing Chitin-Rich Bio-waste to Specialty Chemicals. Grand Challenges in Biology and Biotechnology, 2018, , 555-578.	2.4	22
52	Energy-Efficient Carbon Fiber Production with Concentrated Solar Power: Process Design and Techno-economic Analysis. Industrial & Engineering Chemistry Research, 2018, 57, 7934-7945.	3.7	16
53	Strain selection of microalgae isolated from Tunisian coast: characterization of the lipid profile for potential biodiesel production. Bioprocess and Biosystems Engineering, 2018, 41, 1449-1459.	3.4	12
54	Matrix-free laser desorption ionization mass spectrometry as a functional tool for the analysis and differentiation of complex phenolic mixtures in propolis: a new approach to quality control. Analytical and Bioanalytical Chemistry, 2018, 410, 6187-6195.	3.7	11

THOMAS B BRüCK

#	Article	IF	CITATIONS
55	Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches. Frontiers in Chemistry, 2018, 6, 101.	3.6	6
56	A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass. Applied Energy, 2018, 224, 1-12.	10.1	28
57	Transcriptome profiling of the Australian arid-land plant Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) for the identification of monoterpene synthases. Phytochemistry, 2017, 136, 15-22.	2.9	6
58	Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors. Chemical Engineering Science, 2017, 166, 161-167.	3.8	9
59	The effects of TORC signal interference on lipogenesis in the oleaginous yeast Trichosporon oleaginosus. BMC Biotechnology, 2017, 17, 27.	3.3	12
60	Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess and Biosystems Engineering, 2017, 40, 911-918.	3.4	83
61	Chemisorption of CO ₂ by chitosan oligosaccharide/DMSO: organic carbamato–carbonato bond formation. Green Chemistry, 2017, 19, 4305-4314.	9.0	42
62	Enzymatic degradation of synthetic poly(3-hydroxybutyrates) as a tool for combinatorial microstructure determination. Polymer Degradation and Stability, 2017, 143, 176-185.	5.8	2
63	Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems. Beilstein Journal of Organic Chemistry, 2017, 13, 845-854.	2.2	20
64	Opportunities and challenges in the development of Cutaneotrichosporon oleaginosus ATCC 20509 as a new cell factory for custom tailored microbial oils. Microbial Cell Factories, 2017, 16, 178.	4.0	45
65	In Vitro Bioconversion of Pyruvate to n-Butanol with Minimized Cofactor Utilization. Frontiers in Bioengineering and Biotechnology, 2016, 4, 74.	4.1	21
66	Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microbial Cell Factories, 2016, 15, 86.	4.0	9
67	Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E958-67.	7.1	57
68	Thermal Reactor Model for Large-Scale Algae Cultivation in Vertical Flat Panel Photobioreactors. Environmental Science & Technology, 2016, 50, 3920-3927.	10.0	23
69	Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology, 2016, 100, 1077-1088.	3.6	90
70	Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chemistry, 2016, 18, 2037-2046.	9.0	52
71	Stereoselective chemo-enzymatic oxidation routes for (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene. Frontiers in Microbiology, 2015, 6, 1115.	3.5	8
72	Characterization of a new, recombinant thermo-active subtilisin-like serine protease derived from Shewanella arctica. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 16-23.	1.8	16

#	Article	IF	CITATIONS
73	Cloning, expression and characterization of the recombinant cold-active type-I pullulanase from Shewanella arctica. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 70-77.	1.8	23
74	Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast <i>Trichosporon oleaginosus</i> : Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems. MBio, 2015, 6, e00918.	4.1	63
75	Identification and characterization of a highly thermostable crotonase from Meiothermus ruber. Journal of Molecular Catalysis B: Enzymatic, 2015, 112, 40-44.	1.8	2
76	Identification and optimization of a novel thermo- and solvent stable ketol-acid reductoisomerase for cell free isobutanol biosynthesis. Biochimie, 2015, 108, 76-84.	2.6	9
77	Detailed Structure–Function Correlations of <i>Bacillus subtilis</i> Acetolactate Synthase. ChemBioChem, 2015, 16, 110-118.	2.6	20
78	Biosorption of Neodymium by Selected Photoautotrophic and Heterotrophic Species. Journal of Chemical Engineering & Process Technology, 2015, 06, .	0.1	4
79	Metabolite and transcriptome analysis of an Australian eremohila plant and its correlation to antibacterial effects. Planta Medica, 2015, 81, .	1.3	0
80	Ecoefficient production of coral derived pseudopterosin in engineered E. coli. Planta Medica, 2015, 81,	1.3	0
81	Production of Macrocyclic Sesqui―and Diterpenes in Heterologous Microbial Hosts: A Systems Approach to Harness Nature's Molecular Diversity. ChemCatChem, 2014, 6, 1142-1165.	3.7	11
82	Purification and characterization of a cold-adapted pullulanase from a psychrophilic bacterial isolate. Extremophiles, 2014, 18, 1095-1102.	2.3	15
83	Meiothermus ruber thiolase – A new process stable enzyme for improved butanol synthesis. Biochimie, 2014, 103, 16-22.	2.6	4
84	The effect of proteolysis on the induction of cell death by monomeric alpha-lactalbumin. Biochimie, 2014, 97, 138-143.	2.6	11
85	The first structure of a bacterial diterpene cyclase: CotB2. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1528-1537.	2.5	48
86	Characterization of a highly thermostable ß-hydroxybutyryl CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 138-144.	1.8	9
87	Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chemistry, 2013, 15, 1720.	9.0	285
88	Targeted Engineering of Cyclooctatâ€9â€enâ€7â€ol Synthase: A Stereospecific Access to Two New Nonâ€natural Fusicoccaneâ€Type Diterpenes. ChemCatChem, 2013, 5, 3289-3298.	3.7	30
89	Cellâ€Free Metabolic Engineering: Production of Chemicals by Minimized Reaction Cascades. ChemSusChem, 2012, 5, 2165-2172.	6.8	219

90 4 Algae symbiosis with eukaryotic partners. , 2012, , 55-86.

#	Article	IF	CITATIONS
91	Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase. Biochimie, 2011, 93, 217-226.	2.6	20
92	Comparison of the anaerobic microbiota of deep-water <i>Geodia</i> spp. and sandy sediments in the Straits of Florida. ISME Journal, 2010, 4, 686-699.	9.8	35
93	A New Prokaryotic Farnesyldiphosphate Synthase from the Octocoral Eunicea Fusca: Differential Display, Inverse PCR, Cloning, and Characterization. Marine Biotechnology, 2009, 11, 62-73.	2.4	3
94	Comparative Proteomic Analysis of Matched Primary and Metastatic Melanoma Cell Lines. Journal of Proteome Research, 2008, 7, 4107-4118.	3.7	39
95	The diversity of the bacterial communities associated with the azooxanthellate hexacoral <i>Cirrhipathes lutkeni</i> . ISME Journal, 2007, 1, 654-659.	9.8	31
96	Diversity of the Bacterial Communities Associated with the Azooxanthellate Deep Water Octocorals Leptogorgia minimata, Iciligorgia schrammi, and Swiftia exertia. Marine Biotechnology, 2007, 9, 561-576.	2.4	47
97	Purification and kinetic properties of elisabethatriene synthase from the coral Pseudopterogorgia elisabethae. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 143, 269-278.	1.6	13
98	Oxidation of mitoxantrone by lactoperoxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1649, 154-163.	2.3	7
99	Oxidation of thioanisole and p-methoxythioanisole by lignin peroxidase: kinetic evidence of a direct reaction between compound II and a radical cation. Biochemical Journal, 2003, 374, 761-766.	3.7	4
100	Spectrophotometric investigations with hexa-coordinate ferric lignin peroxidase: does water retention at the active site influence catalysis?. Biochemical and Biophysical Research Communications, 2002, 297, 406-411.	2.1	1
101	Mechanism of nitrite-stimulated catalysis by lactoperoxidase. FEBS Journal, 2001, 268, 3214-3222.	0.2	38