Jun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407162/publications.pdf

Version: 2024-02-01

394421 361022 1,217 43 19 35 h-index citations g-index papers 43 43 43 1593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Sensitive Ammonia Sensor Using Long Period Fiber Grating Coated With Graphene Oxide/Cellulose Acetate. IEEE Sensors Journal, 2021, 21, 16691-16700.	4.7	13
2	Graphene oxide-functionalized long period fiber grating for ultrafast label-free glucose biosensor. Materials Science and Engineering C, 2020, 107, 110329.	7.3	54
3	A Recyclable Optical Fiber Sensor Based on Fluorescent Carbon Dots for the Determination of Ferric Ion Concentrations. Journal of Lightwave Technology, 2019, 37, 4815-4822.	4.6	14
4	Ultrasensitive NO Gas Sensor Based on the Graphene Oxide-Coated Long-Period Fiber Grating. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40868-40874.	8.0	36
5	Preparation of Carbon Dots with High-Fluorescence Quantum Yield and Their Application in Dopamine Fluorescence Probe and Cellular Imaging. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	50
6	A novel optical fiber glucose biosensor based on carbon quantum dots-glucose oxidase/cellulose acetate complex sensitive film. Biosensors and Bioelectronics, 2019, 146, 111760.	10.1	86
7	A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose. Applied Biochemistry and Biotechnology, 2019, 187, 1569-1580.	2.9	24
8	Synthesis of Fluorescent Carbon Quantum Dots and Their Application in the Plant Cell Imaging. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1546-1550.	1.0	8
9	Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid. Royal Society Open Science, 2018, 5, 172149.	2.4	34
10	A "Turn-On―Fluorescence Copper Biosensor Based on DNA Cleavage-Dependent Graphene Oxide-dsDNA-CdTe Quantum Dots Complex. Sensors, 2018, 18, 2605.	3.8	7
11	Insight into the reactivity difference of two iron phthalocyanine catalysts in chromogenic reaction: DFT theoretical study. Inorganic and Nano-Metal Chemistry, 2017, 47, 1406-1411.	1.6	3
12	A temperature-triggered fiber optic biosensor based on hydrogel-magnetic immobilized enzyme complex for sequential determination of cholesterol and glucose. Biochemical Engineering Journal, 2017, 125, 123-128.	3.6	28
13	Characterization and saturable absorption property of graphene oxide on optical fiber by optical deposition. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 882-887.	1.0	2
14	Complex of hydrogel with magnetic immobilized GOD for temperature controlling fiber optic glucose sensor. Biochemical Engineering Journal, 2016, 114, 262-267.	3.6	19
15	Fluorescence detection for H2PO4 - based on carbon dots/Fe3+ composite. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1226-1229.	1.0	4
16	Temperature controlling fiber optic glucose sensor based on hydrogel-immobilized GOD complex. Sensors and Actuators B: Chemical, 2016, 237, 24-29.	7.8	20
17	Fluorescent glucose sensing using CdTe/CdS quantum dots–glucose oxidase complex. Analytical Methods, 2016, 8, 2967-2970.	2.7	14
18	Immobilization of cholesterol oxidase on SiO2 nanoparticles and its application in Fiber optic cholesterol sensor., 2016,,.		2

#	Article	IF	CITATIONS
19	A fiber optic cholesterol biosensor based on magnetic immobilized cholesterol oxidase. , 2016, , .		O
20	A fiber optic sensor for determination of 2,4-dichlorophenol based on iron(II) phthalocyanine catalysis. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1317-1320.	1.0	4
21	Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles. Materials Science and Engineering C, 2015, 57, 31-37.	7.3	20
22	Development of 2-Chlorophenol Sensor Based on a Fiber Optic Oxygen Transducer via Oxidation Reaction Catalyzed by Tetranitro Iron (II) Phthalocyanine. IEEE Sensors Journal, 2014, 14, 3693-3700.	4.7	3
23	A fiber optic sensor for 2-cholrophenol analysis based on oxygen sensing system. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 1178-1182.	1.0	2
24	Synthesis of Two Novel Water-Soluble Iron Phthalocyanines and Their Application in Fast Chromogenic Identification of Phenolic Pollutants. Catalysis Letters, 2014, 144, 487-497.	2.6	12
25	Fast chromogenic identification of phenolic pollutants via homogeneous oxidation with t-BuOOH in the presence of iron (III) octacarboxyphthalocyanine. Catalysis Communications, 2014, 45, 95-99.	3.3	13
26	A novel fluorescence probe 9-(4-(1,2-diamine)benzene-N1-phenyl)acridine for nitric oxide determination. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 848-853.	1.0	2
27	Photocatalytic chromogenic identification of chlorophenol pollutants by manganese phthalocyanine under sunlight irradiation. Separation and Purification Technology, 2014, 125, 216-222.	7.9	13
28	Enhancing heterogeneous catalytic activity of iron (II) phthalocyanine by ethanol and its application in 2,4-dichlorophenol detection. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 567-571.	1.0	2
29	First observation of tetranitro iron (II) phthalocyanine catalyzed oxidation of phenolic pollutant assisted with 4-aminoantipyrine using dioxygen as oxidant. Journal of Molecular Catalysis A, 2011, 345, 108-116.	4.8	50
30	A new immobilized glucose oxidase using SiO2 nanoparticles as carrier. Materials Science and Engineering C, 2011, 31, 1374-1378.	7.3	32
31	Controlled preparation of monodisperse CoFe2O4 nanoparticles by a facile method. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 257-261.	1.0	7
32	Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier. Applied Surface Science, 2011, 257, 5739-5745.	6.1	54
33	Immobilization of glucose oxidase on Fe3O4/SiO2 magnetic nanoparticles. Biotechnology Letters, 2010, 32, 817-821.	2.2	46
34	A novel fiber optic biosensor for nitric oxide determination based on vicinal diaminobenzozcridine fluorescent probe. Proceedings of SPIE, 2010, , .	0.8	0
35	Preparation of magnetic chitosan nanoparticles and immobilization of laccase. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 42-47.	1.0	60
36	Spectra and DNA-binding properties of two novel mixed-ligand complexes containing organosulfonate. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 181-185.	1.0	2

#	Article	IF	CITATIONS
37	Copper phthalocyanine catalysis to oxidation of adrenaline by oxygen and its application in adrenaline detection. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 606-609.	1.0	5
38	A Novel Fiber Optic Biosensor for the Determination of Adrenaline Based on Immobilized Laccase Catalysis. Analytical Letters, 2008, 41, 1430-1442.	1.8	41
39	A novel method of adrenaline concentration detection using fiber optical biosensor based on the catalysis of iron(II) phthalocyanine. Proceedings of SPIE, 2008, , .	0.8	2
40	Photorefractive effect in a CdS nanoparticles-sensitized polymer composite. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 638-642.	1.0	0
41	Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. International Journal of Nanomedicine, 2007, 2, 775-84.	6.7	21
42	Immobilization of Pycnoporus sanguineus laccase on copper tetra-aminophthalocyanine–Fe3O4 nanoparticle composite. Biotechnology and Applied Biochemistry, 2006, 44, 93.	3.1	40
43	Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochemical Engineering Journal, 2005, 25, 15-23.	3.6	368