Rui-Ning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407124/publications.pdf

Version: 2024-02-01

932766 676716 27 490 10 22 citations g-index h-index papers 27 27 27 818 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hole- and electron-injection driven phase transitions in transition metal dichalcogenides and beyond: A unified understanding. Physical Review B, 2022, 105, .	1.1	10
2	Spin-wave modes of elliptical skyrmions in magnetic nanodots. New Journal of Physics, 2022, 24, 043005.	1.2	7
3	Inverse design and high-throughput screening of TM-A (TM: Transition metal; A: O, S, Se) cathodes for chloride-ion batteries. Energy Storage Materials, 2022, 51, 80-87.	9.5	7
4	Quasi-bonding-induced gap states in metal/two-dimensional semiconductor junctions: Route for Schottky barrier height reduction. Physical Review B, 2022, 105 , .	1.1	11
5	Spin-wave modes of magnetic bimerons in nanodots. New Journal of Physics, 2022, 24, 073013.	1.2	3
6	High-throughput screening of TMOCl cathode materials based on the full-cell system for chloride-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23169-23177.	5.2	9
7	Efficient hydrogen production <i>via</i> sunlight-driven thermal formic acid decomposition over a porous film of molybdenum carbide. Journal of Materials Chemistry A, 2021, 9, 22481-22488.	5.2	9
8	Strain-driven phase transition and spin polarization of Re-doped transition-metal dichalcogenides. Physical Chemistry Chemical Physics, 2021, 23, 9962-9970.	1.3	1
9	Triple Functions of Ni(OH) < sub > 2 < /sub > on the Surface of WN Nanowires Remarkably Promoting Electrocatalytic Activity in Full Water Splitting. ACS Catalysis, 2020, 10, 13323-13333.	5.5	120
10	Mechanical properties of $1 < i > T < i > T < i > T < i > Below 1 < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i >$	0.6	13
11	Thermoelectricity in B80-based single-molecule junctions: First-principles investigation. Frontiers of Physics, 2019, 14, 1.	2.4	4
12	High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes. Nanoscale, 2018, 10, 19492-19497.	2.8	26
13	Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. Advanced Functional Materials, 2017, 27, 1605717.	7.8	80
14	Variations of thermoelectric performance by electric fields in bilayer MX ₂ (M = W, Mo; X) Tj ETQq0 () 0 rgBT /(Overlock 10 T
15	Electrocatalyts: Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
16	Ultrahigh power factors in P-type 1T-ZrX2 (X = S, Se) single layers. Science Bulletin, 2017, 62, 1530-1537.	4.3	25
17	Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene. International Journal of Thermophysics, 2017, 38, 1.	1.0	2
18	Impact of contact couplings on thermoelectric properties of anti, Fano, and Breit-Wigner resonant junctions. Journal of Applied Physics, 2016, 120, 184303.	1,1	12

#	Article	IF	Citations
19	Intra- and inter-layer charge redistribution in biased bilayer graphene. AIP Advances, 2016, 6, .	0.6	8
20	Thermoelectric properties of fullerene-based junctions: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 28117-28124.	1.3	4
21	Strain and electric field co-modulation of electronic properties of bilayer boronitrene. Journal of Physics Condensed Matter, 2016, 28, 055302.	0.7	2
22	Flatbands in 2D boroxine-linked covalent organic frameworks. Physical Chemistry Chemical Physics, 2016, 18, 1258-1264.	1.3	25
23	Topological insulator in tellurium-based perovskites. International Journal of Modern Physics B, 2015, 29, 1550073.	1.0	2
24	Negative magnetoresistance and spin filtering of spin-coupled di-iron-oxo clusters. Physical Review B, 2014, 89, .	1.1	6
25	First-Principles Analysis of Corrugations, Elastic Constants, and Electronic Properties in Strained Graphyne Nanoribbons. Journal of Physical Chemistry C, 2014, 118, 23328-23334.	1.5	9
26	Electrostatic Spin Crossover in a Molecular Junction of a Single-Molecule Magnet <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Fe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2012, 108, 017202.	2.9	65
27	Semiconductor-metal transition of titanium sesquioxide nanopowder. Journal of Applied Physics, 2012, 111, 123509.	1.1	10