Merete Bilde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3406935/publications.pdf

Version: 2024-02-01

71102 91884 6,329 127 41 69 citations h-index g-index papers 156 156 156 4756 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmospheric Chemistry and Physics, 2006, 6, 1937-1952.	4.9	306
2	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) $\hat{a} \in \text{``integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.}$	4.9	278
3	Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13503-13508.	7.1	251
4	The role of surfactants in Köhler theory reconsidered. Atmospheric Chemistry and Physics, 2004, 4, 2107-2117.	4.9	234
5	Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews, 2015, 115, 4115-4156.	47.7	196
6	Evenâ^'Odd Alternation of Evaporation Rates and Vapor Pressures of C3â^'C9 Dicarboxylic Acid Aerosols. Environmental Science &	10.0	190
7	CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 128-134.	1.6	174
8	Assessment of Density Functional Theory in Predicting Structures and Free Energies of Reaction of Atmospheric Prenucleation Clusters. Journal of Chemical Theory and Computation, 2012, 8, 2071-2077.	5 . 3	168
9	Measuring atmospheric composition change. Atmospheric Environment, 2009, 43, 5351-5414.	4.1	160
10	Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of \hat{l}_{\pm} - and \hat{l}^{2} -Pinene. Environmental Science & Environ	10.0	157
11	Laboratory and Theoretical Study of the Oxy Radicals in the OH- and Cl-Initiated Oxidation of Ethene. Journal of Physical Chemistry A, 1998, 102, 8116-8123.	2.5	146
12	The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles. Journal of Aerosol Science, 2007, 38, 289-304.	3.8	145
13	Assessment of binding energies of atmospherically relevant clusters. Physical Chemistry Chemical Physics, 2013, 15, 16442.	2.8	130
14	High-Molecular Weight Dimer Esters Are Major Products in Aerosols from α-Pinene Ozonolysis and the Boreal Forest. Environmental Science and Technology Letters, 2016, 3, 280-285.	8.7	127
15	Surfactants in cloud droplet activation: mixed organic-inorganic particles. Atmospheric Chemistry and Physics, 2010, 10, 5663-5683.	4.9	123
16	Atmospheric Chemistry of HFE-7100 (C4F9OCH3): Reaction with OH Radicals, UV Spectra and Kinetic Data for C4F9OCH2· and C4F9OCH2O· Radicals, and the Atmospheric Fate of C4F9OCH2O· Radicals. Journal of Physical Chemistry A, 1997, 101, 8264-8274.	2.5	120
17	Cloud droplet activation and surface tension of mixtures of slightly soluble organics and inorganic salt. Atmospheric Chemistry and Physics, 2005, 5, 575-582.	4.9	104
18	Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	103

#	Article	IF	CITATIONS
19	Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols. Atmospheric Chemistry and Physics, 2013, 13, 3763-3776.	4.9	89
20	Atmospheric Chemistry of CH2BrCl, CHBrCl2, CHBr2Cl, CF3CHBrCl, and CBr2Cl2. Journal of Physical Chemistry A, 1998, 102, 1976-1986.	2.5	79
21	Surfactant partitioning in cloud droplet activation: a study of C8, C10, C12 and C14 normal fatty acid sodium salts. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 416.	1.6	77
22	On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9052-9072.	3.3	74
23	CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase. Tellus, Series B: Chemical and Physical Meteorology, 2022, 56, 128.	1.6	72
24	Investigating Primary Marine Aerosol Properties: CCN Activity of Sea Salt and Mixed Inorganic–Organic Particles. Environmental Science & Environmen	10.0	64
25	Molecular Interaction of Pinic Acid with Sulfuric Acid: Exploring the Thermodynamic Landscape of Cluster Growth. Journal of Physical Chemistry A, 2014, 118, 7892-7900.	2.5	64
26	Adipic and Malonic Acid Aqueous Solutions:Â Surface Tensions and Saturation Vapor Pressures. Journal of Physical Chemistry A, 2007, 111, 12995-13002.	2.5	60
27	Atmospheric Chemistry of Dimethyl Carbonate:Â Reaction with OH Radicals, UV Spectra of CH3OC(O)OCH2and CH3OC(O)OCH2O2Radicals, Reactions of CH3OC(O)OCH2O2with NO and NO2, and Fate of CH3OC(O)OCH2O Radicals. Journal of Physical Chemistry A, 1997, 101, 3514-3525.	2.5	58
28	Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of \hat{l}^2 -pinene. Atmospheric Chemistry and Physics, 2009, 9, 3583-3599.	4.9	57
29	Relating cloud condensation nuclei activity and oxidation level of <i <math="">\hat{l} ± </i> -pinene secondary organic aerosols. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	57
30	Interaction of Glycine with Common Atmospheric Nucleation Precursors. Journal of Physical Chemistry A, 2013, 117, 12990-12997.	2.5	55
31	Cloud droplet activation of saccharides and levoglucosan particles. Atmospheric Environment, 2006, 40, 1794-1802.	4.1	54
32	Humidity influence on gasâ€particle phase partitioning of <i>α</i> â€pinene + O ₃ secondary organic aerosol. Geophysical Research Letters, 2010, 37, .	4.0	54
33	Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the summer of 2010. Atmospheric Chemistry and Physics, 2014, 14, 4733-4748.	4.9	54
34	Cloud Droplet Activation of Amino Acid Aerosol Particles. Journal of Physical Chemistry A, 2010, 114, 379-386.	2.5	53
35	Hydration of Atmospheric Molecular Clusters: A New Method for Systematic Configurational Sampling. Journal of Physical Chemistry A, 2018, 122, 5026-5036.	2.5	53
36	Atmospheric Chemistry of HFE-7200 (C4F9OC2H5): Reaction with OH Radicals and Fate of C4F9OCH2CH2O(•) and C4F9OCHO(•)CH3Radicals. Journal of Physical Chemistry A, 1998, 102, 4839-4845	2.5	51

3

#	Article	IF	CITATIONS
37	Influence of Nucleation Precursors on the Reaction Kinetics of Methanol with the OH Radical. Journal of Physical Chemistry A, 2013, 117, 6695-6701.	2.5	51
38	Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data. Atmospheric Chemistry and Physics, 2010, 10, 5625-5639.	4.9	46
39	Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts. Atmospheric Environment, 2016, 130, 36-53.	4.1	46
40	Characterization of humicâ€like substances in Arctic aerosols. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5011-5027.	3.3	45
41	Atmospheric Oxidation Mechanism of Methyl Formate. Journal of Physical Chemistry A, 2001, 105, 5146-5154.	2.5	44
42	The effect of nitrogen dioxide on particle formation during ozonolysis of two abundant monoterpenes indoors. Atmospheric Environment, 2006, 40, 1030-1042.	4.1	44
43	Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM _{2.5} from Xi'an, northwestern China. Atmospheric Measurement Techniques, 2018, 11, 3447-3456.	3.1	44
44	Thermodynamic Properties of Malonic, Succinic, and Glutaric Acids:Â Evaporation Rates and Saturation Vapor Pressures. Environmental Science & Environm	10.0	42
45	Joint effect of organic acids and inorganic salts on cloud droplet activation. Atmospheric Chemistry and Physics, 2011, 11, 3895-3911.	4.9	42
46	Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmospheric Chemistry and Physics, 2019, 19, 2015-2061.	4.9	42
47	A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols. Atmospheric Measurement Techniques, 2018, 11, 49-63.	3.1	41
48	Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis. Atmospheric Chemistry and Physics, 2019, 19, 7609-7625.	4.9	41
49	Soluble mass, hygroscopic growth, and droplet activation of coated soot particles during LACIS Experiment in November (LExNo). Journal of Geophysical Research, 2010, 115, .	3.3	40
50	Impact of fatty acid coating on the CCN activity of sea salt particles. Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1304064.	1.6	40
51	Cloud droplet activation of mixed model HULIS and NaCl particles: Experimental results and κ-Köhler theory. Atmospheric Research, 2014, 137, 167-175.	4.1	37
52	Computational study of the Rayleigh light scattering properties of atmospheric pre-nucleation clusters. Physical Chemistry Chemical Physics, 2014, 16, 10883-10890.	2.8	37
53	A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid. Atmospheric Research, 2006, 82, 579-590.	4.1	36
54	Ambient reaction kinetics of atmospheric oxygenated organics with the OH radical: a computational methodology study. Physical Chemistry Chemical Physics, 2013, 15, 9636.	2.8	36

#	Article	IF	CITATIONS
55	Hydration of Atmospheric Molecular Clusters II: Organic Acid–Water Clusters. Journal of Physical Chemistry A, 2018, 122, 8549-8556.	2.5	36
56	Sea Spray Aerosol Formation: Laboratory Results on the Role of Air Entrainment, Water Temperature, and Phytoplankton Biomass. Environmental Science & Environmental Science & 2019, 53, 13107-13116.	10.0	36
57	The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures. Atmospheric Chemistry and Physics, 2020, 20, 11089-11117.	4.9	35
58	Atmospheric Chemistry of CF3CFHCF3(HFC-227ea): Spectrokinetic Investigation of the CF3CFO2•CF3Radical, Its Reactions with NO and NO2, and Fate of the CF3CFO•CF3Radical. The Journal of Physical Chemistry, 1996, 100, 8882-8889.	2.9	34
59	Intercomparison of cloud condensation nuclei and hygroscopic fraction measurements: Coated soot particles investigated during the LACIS Experiment in November (LExNo). Journal of Geophysical Research, 2010, 115, .	3.3	34
60	Molecular Characterization and Source Identification of Atmospheric Particulate Organosulfates Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Environmental Science, 2019, 53, 6192-6202.	10.0	34
61	Thermodynamic properties and cloud droplet activation of a series of oxo-acids. Atmospheric Chemistry and Physics, 2010, 10, 5873-5890.	4.9	33
62	CCN activity and volatility of \hat{l}^2 -caryophyllene secondary organic aerosol. Atmospheric Chemistry and Physics, 2013, 13, 2283-2297.	4.9	33
63	Atmospheric chemistry of acetone: Kinetic study of the CH3C(O)CH2O2+NO/NO2 reactions and decomposition of CH3C(O)CH2O2NO2. International Journal of Chemical Kinetics, 1998, 30, 475-489.	1.6	32
64	Hygroscopic growth and CCN activity of HULIS from different environments. Journal of Geophysical Research, 2012, 117, .	3.3	32
65	The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene. Environmental Sciences: Processes and Impacts, 2017, 19, 1220-1234.	3.5	32
66	Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting. Frontiers in Microbiology, 2013, 4, 224.	3.5	31
67	Chemical properties of HULIS from three different environments. Journal of Atmospheric Chemistry, 2015, 72, 65-80.	3.2	30
68	Effect of Aerosolization and Drying on the Viability of Pseudomonas syringae Cells. Frontiers in Microbiology, 2018, 9, 3086.	3.5	30
69	Atmospheric Chemistry of 1,2-Dichloroethane:Â UV Spectra of CH2ClCHCl and CH2ClCHClO2Radicals, Kinetics of the Reactions of CH2ClCHCl Radicals with O2and CH2ClCHClO2Radicals with NO and NO2, and Fate of the Alkoxy Radical CH2ClCHClO. The Journal of Physical Chemistry, 1996, 100, 5751-5760.	2.9	29
70	Kinetics and Mechanism of the Gas Phase Reaction of Atomic Chlorine with CH2ICl at 206â^'432 K. Journal of Physical Chemistry A, 1997, 101, 8035-8041.	2.5	29
71	An evaluation and comparison of cloud condensation nucleus activity models: Predicting particle critical saturation from growth at subsaturation. Journal of Geophysical Research, 2010, 115, .	3.3	29
72	FT-IR Product Studies of the Cl-Initiated Oxidation of CH3Cl in the Presence of NO. Journal of Physical Chemistry A, 1999, 103, 3963-3968.	2.5	28

#	Article	IF	CITATIONS
73	Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber. Aerosol Science and Technology, 2013, 47, 1038-1046.	3.1	28
74	Atmospheric Chemistry of HFC-227ca:Â Spectrokinetic Investigation of the CF3CF2CF2O2Radical, Its Reactions with NO and NO2, and the Atmospheric Fate of the CF3CF2CF2O Radical. The Journal of Physical Chemistry, 1996, 100, 6572-6579.	2.9	26
75	Ab initio study of the Pauling-London-Pople (ring current) effect: LORG calculation and analysis of the NMR shielding tensors in a Sondheimer aromatic annulene and a non-aromatic analogue. Molecular Physics, 1997, 92, 237-250.	1.7	25
76	Examination of laboratoryâ€generated coated soot particles: An overview of the LACIS Experiment in November (LExNo) campaign. Journal of Geophysical Research, 2010, 115, .	3.3	25
77	Urban organic aerosol composition in eastern China differs from north to south: molecular insight from a liquid chromatography–mass spectrometry (Orbitrap) study. Atmospheric Chemistry and Physics, 2021, 21, 9089-9104.	4.9	25
78	Atmospheric chemistry of iodine anions: elementary reactions of I ^{$\hat{a}^{\prime\prime}$} , IO ^{$\hat{a}^{\prime\prime}$} , and IO ₂ ^{$\hat{a}^{\prime\prime}$} with ozone studied in the gas-phase at 300 K using an ion trap. Physical Chemistry Chemical Physics, 2018, 20, 28606-28615.	2.8	24
79	Secondary aerosol formation from dimethyl sulfide – improved mechanistic understanding based on smog chamber experiments and modelling. Atmospheric Chemistry and Physics, 2021, 21, 9955-9976.	4.9	24
80	Kinetics and mechanism of the reaction of Cl atoms with CH2 CO (Ketene). International Journal of Chemical Kinetics, 1996, 28, 627-635.	1.6	23
81	Interaction energies between aerosol precursors formed in the photo-oxidation of $\hat{l}\pm$ -pinene. Molecular Physics, 2004, 102, 2361-2368.	1.7	22
82	Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets. Environmental Science & Environmental Science	10.0	21
83	The Aarhus Chamber Campaign on Highly Oxygenated Organic Molecules and Aerosols (ACCHA): particle formation, organic acids, and dimer esters from <l>α-pinene ozonolysis at different temperatures. Atmospheric Chemistry and Physics, 2020, 20, 12549-12567.</l>	4.9	21
84	Atmospheric Chemistry of CF2BrH:Â Kinetics and Mechanism of Reaction with F and Cl Atoms and Fate of CF2BrO Radicals. The Journal of Physical Chemistry, 1996, 100, 7050-7059.	2.9	20
85	Atmospheric Chemistry of CH3I:  Reaction with Atomic Chlorine at 1â^700 Torr Total Pressure and 295 K. Journal of Physical Chemistry A, 1998, 102, 1550-1555.	2.5	20
86	Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures. Journal of Aerosol Science, 2004, 35, 1453-1465.	3.8	20
87	Evaporation of ternary inorganic/organic aqueous droplets: Sodium chloride, succinic acid and water. Journal of Aerosol Science, 2010, 41, 760-770.	3.8	20
88	Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures. Journal of Aerosol Science, 2004, 35, 1453-1465.	3.8	19
89	What controls volatility of sea spray aerosol? Results from laboratory studies using artificial and real seawater samples. Journal of Aerosol Science, 2017, 107, 134-141.	3.8	19
90	The reaction of hydrated iodide I(H ₂ O) ^{â^'} with ozone: a new route to IO ₂ ^{â^'} products. Physical Chemistry Chemical Physics, 2019, 21, 17546-17554.	2.8	19

#	Article	IF	CITATIONS
91	Kinetics and Mechanism of the Reaction of F Atoms with CH3Br. The Journal of Physical Chemistry, 1996, 100, 10989-10998.	2.9	18
92	Atmospheric Chemistry of CH2BrCl: Kinetics and Mechanism of the Reaction of F Atoms with CH2BrCl and Fate of the CHBrClO•Radical. Journal of Physical Chemistry A, 1997, 101, 5477-5488.	2.5	17
93	Large Discrepancy in the Formation of Secondary Organic Aerosols from Structurally Similar Monoterpenes. ACS Earth and Space Chemistry, 2021, 5, 632-644.	2.7	17
94	Hydration of Atmospheric Molecular Clusters III: Procedure for Efficient Free Energy Surface Exploration of Large Hydrated Clusters. Journal of Physical Chemistry A, 2020, 124, 5253-5261.	2.5	16
95	New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals. ACS Earth and Space Chemistry, 2021, 5, 801-811.	2.7	15
96	Characterization of volcanic ash from the 2011 GrÃmsvötn eruption byÂmeans of single-particle analysis. Atmospheric Environment, 2013, 79, 411-420.	4.1	14
97	Chemical and isotopic composition of secondary organic aerosol generated by & amp; t; > ±& t; i>-pinene ozonolysis. Atmospheric Chemistry and Physics, 2017, 17, 6373-6391.	4.9	14
98	Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixedâ€Phase Clouds. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032808.	3.3	14
99	Kinetics and Mechanism of the Reaction of Cl Atoms with Nitrobenzene. Journal of Physical Chemistry A, 2000, 104, 11328-11331.	2.5	13
100	Factor analysis of chemical ionization experiments: Numerical simulations and an experimental case study of the ozonolysis of \hat{l}_{\pm} -pinene using a PTR-ToF-MS. Atmospheric Environment, 2019, 199, 15-31.	4.1	13
101	Overview of the biosphere-aerosol-cloud-climate interactions (BACCI) studies. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 300-317.	1.6	12
102	Relaxed step functions for evaluation of CCN counter data on size-separated aerosol particles. Journal of Aerosol Science, 2008, 39, 592-608.	3.8	12
103	From Water Clustering to Osmotic Coefficients. Journal of Physical Chemistry A, 2010, 114, 11933-11942.	2.5	11
104	The impact of atmospheric oxidation on hygroscopicity and cloud droplet activation of inorganic sea spray aerosol. Scientific Reports, 2021, 11, 10008.	3.3	11
105	Emissions of soot, PAHs, ultrafine particles, NO _{x,} and other health relevant compounds from stressed burning of candles in indoor air. Indoor Air, 2021, 31, 2033-2048.	4.3	11
106	Acute health effects from exposure to indoor ultrafine particlesâ€"A randomized controlled crossover study among young mild asthmatics. Indoor Air, 2021, 31, 1993-2007.	4.3	10
107	Atmospheric Chemistry of HFC-236cb: Spectrokinetic Investigation of the CF3CF2CFHO2 Radical, Its Reaction with NO and NO2, and the Fate of the CF3CF2CFHO Radical. The Journal of Physical Chemistry, 1995, 99, 17386-17393.	2.9	8
108	Atmospheric Chemistry of 1,1,1,2-Tetrachloroethane (CCl3CH2Cl):  Spectrokinetic Investigation of the CCl3CClHO2 Radical, Its Reactions with NO and NO2, and Atmospheric Fate of the CCl3CClHO Radical. The Journal of Physical Chemistry, 1996, 100, 18399-18407.	2.9	8

#	Article	IF	CITATIONS
109	Phase State and Saturation Vapor Pressure of Submicron Particles of <i>meso</i> -Erythritol at Ambient Conditions. Journal of Physical Chemistry A, 2016, 120, 7183-7191.	2.5	8
110	Reconciling atmospheric water uptake by hydrate forming salts. Environmental Sciences: Processes and Impacts, 2020, 22, 1759-1767.	3. 5	8
111	Exploring controlling factors for sea spray aerosol production: temperature, inorganic ions and organic surfactants. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1801305.	1.6	8
112	Emissions of ultrafine particles from five types of candles during steady burn conditions. Indoor Air, 2021, 31, 1084-1094.	4.3	8
113	Investigation of Particleâ [^] Molecule Interactions by Use of a Dielectric Continuum Model. Journal of Physical Chemistry A, 2003, 107, 8623-8629.	2.5	7
114	Water Activity. Spectroscopy, 2012, 27, 565-569.	0.8	7
115	Battery Concepts in Physical Chemistry: Making Your Own Organic–Inorganic Battery. Journal of Chemical Education, 2019, 96, 1465-1471.	2.3	7
116	An RCT of acute health effects in COPD-patients after passive vape exposure from e-cigarettes. European Clinical Respiratory Journal, 2021, 8, 1861580.	1.5	7
117	Evaporation Rates and Saturation Vapour Pressures of C3–C6 Dicarboxylic Acids. , 2007, , 920-923.		5
118	A quantum mechanical/molecular mechanical approach to the investigation of particle–molecule interactions. Journal of Chemical Physics, 2003, 118, 10085-10092.	3.0	4
119	The reaction of isotope-substituted hydrated iodide I(H182O) ^{â^'} with ozone: the reactive influence of the solvent water molecule. Physical Chemistry Chemical Physics, 2020, 22, 19080-19088.	2.8	2
120	BINARY EVAPORATION OF SUCCINIC ACID AND WATER DROPLETS: COMPARISON OF SIMULATED AND EXPERIMENTAL RESULTS. Journal of Aerosol Science, 2004, 35, S1159-S1160.	3.8	1
121	EVAPORARTION RATES AND VAPOUR PRESSURES OF SUCCINIC ACID SOLUTION DROPLETS. Journal of Aerosol Science, 2004, 35, S1041-S1042.	3.8	1
122	Reflection on two Ambio papers by P. J. Crutzen on ozone in the upper atmosphere. Ambio, 2021, 50, 40-43.	5 . 5	1
123	Temperature and volatile organic compound concentrations as controlling factors for chemical composition of & amp;lt;i& amp;gt; \hat{l} & amp;gt;/i& amp;gt;-pinene-derived secondary organic aerosol. Atmospheric Chemistry and Physics, 2021, 21, 11545-11562.	4.9	1
124	Determining the saturation vapour pressures of keto-dicarboxylic acids in aqueous solutions. , 2013, , .		0
125	Atmospheric surfaces. Environmental Sciences: Processes and Impacts, 2018, 20, 1498-1499.	3.5	0
126	Reply to the $\hat{a}\in Comment$ on $\hat{a}\in Atmospheric$ chemistry of iodine anions: elementary reactions of $ \langle sup \rangle \hat{a}^{*}\langle sup \rangle$, $ O\langle sup \rangle \hat{a}^{*}\langle sup \rangle$, and $ O\hat{a}^{*}\rangle \hat{a}^{*}\langle sup \rangle$, and $ O\hat{a}^{*}\rangle \hat{a}^{*}\rangle \hat{a}^{*}\langle sup \rangle$, and $ O\hat{a}^{*}\rangle \hat{a}^{*}\rangle \hat{a}^{*$	2.8	0

ARTICLE

Passive exposure of COPD patients to e-cigarette vape - a double-blinded exposure chamber study.,

O

O