James C Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340691/publications.pdf

Version: 2024-02-01

91712 76196 19,064 73 40 69 citations h-index g-index papers 85 85 85 31397 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491, 119-124.	13.7	4,038
2	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	9.4	2,421
3	Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genetics, 2010, 42, 1118-1125.	9.4	2,284
4	Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 2015, 47, 979-986.	9.4	1,965
5	Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature Genetics, 2011, 43, 246-252.	9.4	1,201
6	Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nature Genetics, 2017, 49, 256-261.	9.4	943
7	Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 2010, 464, 713-720.	13.7	737
8	Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet, The, 2016, 387, 156-167.	6.3	607
9	T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature, 2015, 523, 612-616.	13.7	535
10	Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nature Genetics, 2009, 41, 1330-1334.	9.4	483
11	Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. Journal of Clinical Investigation, 2011, 121, 4170-4179.	3.9	268
12	The cellular composition of the human immune system is shaped by age and cohabitation. Nature Immunology, 2016, 17, 461-468.	7.0	258
13	Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease. Nature Genetics, 2017, 49, 262-268.	9.4	250
14	Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway. Cell, 2013, 155, 57-69.	13.5	200
15	Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature, 2013, 498, 232-235.	13.7	184
16	HLA-DQA1â€"HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nature Genetics, 2014, 46, 1131-1134.	9.4	165
17	IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nature Communications, 2018, 9, 2427.	5.8	159
18	Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nature Genetics, 2017, 49, 186-192.	9.4	153

#	Article	IF	CITATIONS
19	Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies. Gastroenterology, 2013, 145, 339-347.	0.6	149
20	A blood-based prognostic biomarker in IBD. Gut, 2019, 68, 1386-1395.	6.1	132
21	Predicting Outcomes to Optimize Disease Management in Inflammatory Bowel Diseases. Journal of Crohn's and Colitis, 2016, 10, 1385-1394.	0.6	115
22	Structure of a nascent membrane protein as it folds on the BAM complex. Nature, 2020, 583, 473-478.	13.7	101
23	High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Research, 2019, 29, 344-355.	2.4	100
24	InÂVivo Characterization of Linc-p21 Reveals Functional cis -Regulatory DNA Elements. Cell Reports, 2016, 16, 2178-2186.	2.9	94
25	Adjustment for index event bias in genome-wide association studies of subsequent events. Nature Communications, 2019, 10, 1561.	5.8	87
26	Genomeâ€wide association studies in Crohn's disease: Past, present and future. Clinical and Translational Immunology, 2018, 7, e1001.	1.7	80
27	Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease. PLoS Genetics, 2016, 12, e1005908.	1.5	80
28	Characterization of a stalled complex on the \hat{l}^2 -barrel assembly machine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8717-8722.	3.3	77
29	Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data. Scientific Reports, 2019, 9, 10351.	1.6	75
30	The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nature Communications, 2019, 10, 5137.	5.8	60
31	Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes. PLoS Genetics, 2015, 11, e1004955.	1.5	59
32	EROS/CYBC1 mutations: Decreased NADPH oxidase function and chronic granulomatous disease. Journal of Allergy and Clinical Immunology, 2019, 143, 782-785.e1.	1.5	59
33	Genetic association between NLRP3 variants and Crohn $\hat{E}^1\!\!/\!\!4$ s disease does not replicate in a large UK panel. Inflammatory Bowel Diseases, 2011, 17, 1387-1391.	0.9	56
34	PRedicting Outcomes For Crohn's dIsease using a moLecular biomarkEr (PROFILE): protocol for a multicentre, randomised, biomarker-stratified trial. BMJ Open, 2018, 8, e026767.	0.8	55
35	Personalised medicine in Crohn's disease. The Lancet Gastroenterology and Hepatology, 2020, 5, 80-92.	3.7	55
36	Maintenance of macrophage transcriptional programs and intestinal homeostasis by epigenetic reader SP140. Science Immunology, 2017, 2, .	5.6	54

#	Article	IF	CITATIONS
37	Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. Journal of Experimental Medicine, 2017, 214, 1111-1128.	4.2	50
38	Low Serum Levels of MicroRNA-19 Are Associated with a Stricturing Crohn $\hat{E}^{1}/4$ s Disease Phenotype. Inflammatory Bowel Diseases, 2015, 21, 1926-1934.	0.9	49
39	Formation of a \hat{l}^2 -barrel membrane protein is catalyzed by the interior surface of the assembly machine protein BamA. ELife, 2019, 8, .	2.8	45
40	Rare and functional SIAE variants are not associated with autoimmune disease risk in up to 66,924 individuals of European ancestry. Nature Genetics, 2012, 44, 3-5.	9.4	44
41	FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell, 2020, 180, 278-295.e23.	13.5	42
42	Genome-wide association studies and Crohn's disease. Briefings in Functional Genomics, 2011, 10, 71-76.	1.3	41
43	Association Between Genetic Variation in <i>FOXO3</i> and Reductions in Inflammation and Disease Activity in Inflammatory Polyarthritis. Arthritis and Rheumatology, 2016, 68, 2629-2636.	2.9	32
44	How Do We Predict a Patient's Disease Course and Whether They Will Respond to Specific Treatments?. Gastroenterology, 2022, 162, 1383-1395.	0.6	31
45	Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease. PLoS Genetics, 2018, 14, e1007458.	1.5	30
46	Resolving mechanisms of immuneâ€mediated disease in primary <scp>CD</scp> 4 T cells. EMBO Molecular Medicine, 2020, 12, e12112.	3.3	30
47	Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation. BMC Genomics, 2014, 15, 649.	1.2	28
48	Impaired HA-specific T follicular helper cell and antibody responses to influenza vaccination are linked to inflammation in humans. ELife, 2021, 10 , .	2.8	26
49	MT-HESS: an efficient Bayesian approach for simultaneous association detection in OMICS datasets, with application to eQTL mapping in multiple tissues. Bioinformatics, 2016, 32, 523-532.	1.8	25
50	Renal failure complicating myeloma in pregnancy. Nephrology Dialysis Transplantation, 2007, 22, 3652-3655.	0.4	24
51	Leucocyte subset-specific type 1 interferon signatures in SLE and other immune-mediated diseases. RMD Open, 2016, 2, e000183.	1.8	24
52	A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metabolism, 2022, 34, 106-124.e10.	7.2	23
53	A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies. American Journal of Human Genetics, 2016, 98, 857-868.	2.6	21
54	Pneumocystis jiroveci pneumonia and pneumomediastinum in an anti-TNF \hat{l}_{\pm} naive patient with ulcerative colitis. World Journal of Gastroenterology, 2009, 15, 1897.	1.4	18

#	Article	IF	CITATIONS
55	Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network. Genome Medicine, 2016, 8, 76.	3.6	17
56	Identifying the immune interactions underlying HLA class I disease associations. ELife, 2020, 9, .	2.8	17
57	Predicting the Course of IBD: Light at the End of the Tunnel?. Digestive Diseases, 2012, 30, 95-99.	0.8	14
58	Prognosis in autoimmune and infectious disease: new insights from genetics. Clinical and Translational Immunology, 2014, 3, e15.	1.7	12
59	Genetic feature engineering enables characterisation of shared risk factors in immune-mediated diseases. Genome Medicine, 2020, 12, 106.	3.6	12
60	Acetarsol Suppositories: Effective Treatment for Refractory Proctitis in a Cohort of Patients with Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2018, 63, 1011-1015.	1.1	8
61	Comparison of Pentax HiLine and Olympus Lucera systems at screening colonoscopy. World Journal of Gastrointestinal Endoscopy, 2013, 5, 62.	0.4	7
62	miR-374a-5p regulates inflammatory genes and monocyte function in patients with inflammatory bowel disease. Journal of Experimental Medicine, 2022, 219, .	4.2	7
63	Safety of the colonoscope magnetic imaging device (ScopeGuide) in patients with implantable cardiac devices. Endoscopy, 2014, 46, 135-138.	1.0	5
64	Beyond disease susceptibilityâ€"Leveraging genomeâ€wide association studies for new insights into complex disease biology. Hla, 2017, 90, 329-334.	0.4	4
65	Analytical Mistakes Confound Attempted Validation: A Response to "Transcription and DNA Methylation Patterns of Blood-Derived CD8+ T Cells Are Associated With Age and Inflammatory Bowel Disease But Do Not Predict Prognosis". Gastroenterology, 2021, 160, 2210-2211.	0.6	4
66	Signatures of CD4 T-cell help and CD8 exhaustion predict clinical outcome in autoimmunity, infection, and vaccination. Lancet, The, 2013, 381, S74.	6.3	2
67	Making treatment personal: measurement of exhaustion to target treatment in autoimmunity, infection, and vaccination. Lancet, The, 2014, 383, S12.	6.3	1
68	The Endoscopic Healing Index in Crohn's Disease: A Serum Proteomic Biomarker for Monitoring Disease Activity. Inflammatory Bowel Diseases, 0, , .	0.9	1
69	Novel developments in Crohn's disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 361.	1.0	0
70	Role of Eros, a novel transmembrane protein, in regulation of host defence. Lancet, The, 2016, 387, S12.	6.3	0
71	PWE-042â€Profile biomarker: effect of steroid treatment on a prognostic gene expression signature. , 2018, , .		0
72	Genetic and Genomic Markers for Prognostication. , 2019, , 323-331.		0