Hao-Ling Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3406897/publications.pdf Version: 2024-02-01

HAO-LINC SUN

#	Article	IF	CITATIONS
1	An Organometallic Single-Ion Magnet. Journal of the American Chemical Society, 2011, 133, 4730-4733.	13.7	725
2	Strategies towards single-chain magnets. Coordination Chemistry Reviews, 2010, 254, 1081-1100.	18.8	533
3	Slow magnetic relaxation in a novel carboxylate/oxalate/hydroxyl bridged dysprosium layer. Chemical Science, 2015, 6, 3095-3101.	7.4	158
4	Phosphorescent cocrystals constructed by 1,4-diiodotetrafluorobenzene and polyaromatic hydrocarbons based on C–Iâ<ï€ halogen bonding and other assisting weak interactions. CrystEngComm, 2012, 14, 5027.	2.6	106
5	Elucidation of slow magnetic relaxation in a ferromagnetic 1D dysprosium chain through magnetic dilution. Chemical Communications, 2014, 50, 6052.	4.1	65
6	A 1D dysprosium chain with slow magnetic relaxation constructed from a pyridine-N-oxide ligand. Chemical Communications, 2014, 50, 10434.	4.1	64
7	Unique (3,13)-Connected Coordination Framework Based on Pentacobalt Clusters Constructed from the (3,12)-Connected Analogue and 4,4′-Bipyridyl Spacer: Structural and Magnetic Aspects. Crystal Growth and Design, 2009, 9, 4239-4242.	3.0	54
8	A New Bis(phthalocyaninato) Terbium Single-Ion Magnet with an Overall Excellent Magnetic Performance. Inorganic Chemistry, 2017, 56, 13889-13896.	4.0	53
9	Microwave-Assisted Stepwise Synthesis and Typically Metamagnetic Behavior of a Unique Two-Dimensional Net-Based Material Based on Linear Cu(II)-Azido Chains Mediated by Discrete Cu(II) Segments. Crystal Growth and Design, 2010, 10, 20-24.	3.0	51
10	Assembling Dysprosium Dimer Units into a Novel Chain Featuring Slow Magnetic Relaxation via Formate Linker. Inorganic Chemistry, 2016, 55, 12904-12911.	4.0	46
11	Lanthanide–Organic Frameworks Constructed from 2,7-Naphthalenedisulfonate and 1 <i>H</i> -Imidazo[4,5- <i>f</i>][1,10]-phenanthroline: Synthesis, Structure, and Luminescence with Near-Visible Light Excitation and Magnetic Properties. Inorganic Chemistry, 2019, 58, 9855-9865.	4.0	46
12	Isostructural lanthanide-based metal–organic frameworks: structure, photoluminescence and magnetic properties. Dalton Transactions, 2018, 47, 925-934.	3.3	45
13	Experimental Determination of Magnetic Anisotropy in Exchangeâ€Bias Dysprosium Metallocene Singleâ€Molecule Magnets. Angewandte Chemie - International Edition, 2020, 59, 13037-13043.	13.8	40
14	Tuning Slow Magnetic Relaxation in a Two-Dimensional Dysprosium Layer Compound through Guest Molecules. Inorganic Chemistry, 2016, 55, 7980-7987.	4.0	37
15	Europium Pyrimidine-4,6-dicarboxylate Framework with a Single-Crystal-to-Single-Crystal Transition and a Reversible Dehydration/Rehydration Process. Inorganic Chemistry, 2013, 52, 3582-3584.	4.0	36
16	Modulating Crystal Packing and Magnetic Properties of Nitroxide Free Radicals by Halogen Bonding. Crystal Growth and Design, 2013, 13, 3739-3745.	3.0	33
17	Novel bis(phthalocyaninato) rare earth complexes with the bulky and strong electron-donating dibutylamino groups: synthesis, spectroscopy, and SMM properties. Inorganic Chemistry Frontiers, 2017, 4, 1465-1471.	6.0	32
18	Aerobic Oxidation of Primary Alcohols Catalyzed by Copper Salts and Catalytically Active μâ€Hydroxylâ€Bridged Trinuclear Copper Intermediate. Advanced Synthesis and Catalysis, 2010, 352, 2371-23	77 ^{4.3}	31

HAO-LING SUN

#	Article	IF	CITATIONS
19	Bioinspired Orientation of β-Substituents on Porphyrin Antenna Ligands Switches Ytterbium(III) NIR Emission with Thermosensitivity. Inorganic Chemistry, 2017, 56, 1897-1905.	4.0	31
20	A one-dimensional homochiral Mo(iv)-Cu(ii) coordination polymer: spontaneous resolution and photoresponsive properties. CrystEngComm, 2010, 12, 4045.	2.6	30
21	Lanthanide-pyridyl-2,5-dicarboxylate N-oxide frameworks with rutile topology. CrystEngComm, 2012, 14, 512-518.	2.6	29
22	Chiral six-coordinate Dy(iii) and Tb(iii) complexes of an achiral ligand: structure, fluorescence, and magnetism. Dalton Transactions, 2017, 46, 13035-13042.	3.3	28
23	Fabricating Bis(phthalocyaninato) Terbium SIM into Tetrakis(phthalocyaninato) Terbium SMM with Enhanced Performance through Sodium Coordination. Chemistry - A European Journal, 2018, 24, 8066-8070.	3.3	28
24	Dy ₂ @C ₇₉ N: a new member of dimetalloazafullerenes with strong single molecular magnetism. Nanoscale, 2020, 12, 11130-11135.	5.6	28
25	Constructing a Catalytic Cycle for C–F to C–X (X = O, S, N) Bond Transformation Based on Gold-Mediated Ligand Nucleophilic Attack. Inorganic Chemistry, 2016, 55, 2274-2283.	4.0	25
26	Rational construction of a porous lanthanide coordination polymer featuring reversible guest-dependent magnetic relaxation behavior. Inorganic Chemistry Frontiers, 2018, 5, 2875-2884.	6.0	25
27	Regulating the structural dimensionality and dynamic properties of a porous dysprosium coordination polymer through solvent molecules. Inorganic Chemistry Frontiers, 2020, 7, 930-938.	6.0	24
28	Proton mediated spin state transition of cobalt heme analogs. Nature Communications, 2019, 10, 2303.	12.8	23
29	Modulating Slow Magnetic Relaxation of Dysprosium Compounds through the Position of Coordinating Nitrate Group. Inorganic Chemistry, 2017, 56, 13430-13436.	4.0	22
30	Elucidation of the two-step relaxation processes of a tetranuclear dysprosium molecular nanomagnet through magnetic dilution. Dalton Transactions, 2018, 47, 11636-11644.	3.3	21
31	Construction and theoretical study of a new Dy-Î ² -diketone chain featuring slow magnetic relaxation. CrystEngComm, 2015, 17, 5620-5624.	2.6	20
32	Chiral bis(phthalocyaninato) terbium double-decker compounds with enhanced single-ion magnetic behavior. Inorganic Chemistry Frontiers, 2018, 5, 939-943.	6.0	20
33	Dysprosium complexes bearing unsupported Dy ^{III} –Ge ^{II} /IIImetal–metal bonds as single-ion magnets. Chemical Communications, 2019, 55, 8250-8253.	4.1	20
34	Synthesis, Crystal Structure, and Optical and Photoelectrochemical Properties of a Nâ^©O ^{â^'} Rhenium(I) Complex. Organometallics, 2011, 30, 712-716.	2.3	18
35	A rare chloride-bridged dysprosium chain with slow magnetic relaxation: a thermally activated mechanism <i>via</i> a second-excited state promoted by magnetic interactions. Inorganic Chemistry Frontiers, 2019, 6, 786-790.	6.0	18
36	Novel (4,8)-connected scu coordination framework constructed by tetrakis(4-benzoic acid)ethylene. CrystEngComm, 2013, 15, 1669.	2.6	14

HAO-LING SUN

#	Article	IF	CITATIONS
37	Tuning the dynamic magnetic behaviour and proton conductivity <i>via</i> water-induced reversible single-crystal to single-crystal structural transformation. Journal of Materials Chemistry C, 2021, 9, 15858-15867.	5.5	14
38	Luminescent lanthanide-2-phenylpyrimidine-carboxylate frameworks: structure and luminescence tuning. CrystEngComm, 2014, 16, 6483.	2.6	12
39	Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato]terbium Double-Decker Single-Ion Magnets. Inorganic Chemistry, 2019, 58, 2422-2429.	4.0	12
40	Effect of the Transition Metal Ions on the Single-Molecule Magnet Properties in a Family of Air-Stable 3d–4f Ion-Pair Compounds with Pentagonal Bipyramidal Ln(III) Ions. Inorganic Chemistry, 2021, 60, 18990-19000.	4.0	12
41	Heteroleptic chiral bis(phthalocyaninato) terbium double-decker single-ion magnets. Inorganic Chemistry Frontiers, 2018, 5, 2006-2012.	6.0	11
42	The differential magnetic relaxation behaviours of slightly distorted triangular dodecahedral dysprosium analogues in a type of cyano-bridged 3d–4f zig-zag chain compounds. Dalton Transactions, 2020, 49, 6867-6875.	3.3	8
43	Excited-State Dynamics of Crossing-Controlled Energy Transfer in Europium Complexes. Jacs Au, 2022, 2, 853-864.	7.9	8
44	Synthesis of flavonoids nitrogen mustard derivatives and study on their antitumor activity in vitro. Bioorganic Chemistry, 2020, 96, 103613.	4.1	7
45	The comparative studies on the magnetic relaxation behaviour of the axially-elongated pentagonal-bipyramidal dysprosium and erbium ions in similar one-dimensional chain structures. Dalton Transactions, 2021, 50, 8736-8745.	3.3	7
46	The construction of dynamic dysprosium-carboxylate ribbons by utilizing the hybrid-ligand conception. Dalton Transactions, 2021, 50, 1246-1252.	3.3	6
47	Two novel eight-connected self-penetrating porous lanthanide–organic frameworks: structures, luminescence, and gas adsorption properties. CrystEngComm, 2016, 18, 8159-8163.	2.6	5
48	Construction and magnetic study of two new dysprosium complexes with chain or tetranuclear structure. CrystEngComm, 2017, 19, 4025-4032.	2.6	5
49	N^N Pt(II) Bisacetylide Complexes with Oxoverdazyl Radical Ligands: Preparation, Photophysical Properties, and Magnetic Exchange Interaction between the Two Radical Ligands. Inorganic Chemistry, 2020, 59, 12471-12485.	4.0	5
50	Three bilindione isomers: synthesis, characterization and reactivity of biliverdin analogs. Journal of Biological Inorganic Chemistry, 2017, 22, 727-737.	2.6	4
51	The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds. Inorganics, 2018, 6, 36.	2.7	4
52	Experimental Determination of Magnetic Anisotropy in Exchangeâ€Bias Dysprosium Metallocene Singleâ€Molecule Magnets. Angewandte Chemie, 2020, 132, 13137-13143.	2.0	4
53	A neutral auxiliary ligand enhanced dysprosium(<scp>iii</scp>) single molecule magnet. Dalton Transactions, 2018, 47, 7395-7398.	3.3	3
54	The rational construction of diamond-like dysprosium–hexacyanometallate frameworks featuring dynamic magnetic behaviour. Inorganic Chemistry Frontiers, 2022, 9, 231-240.	6.0	3

HAO-LING SUN

#	Article	IF	CITATIONS
55	Crystal structures and luminescent properties of new lanthanide(<scp>iii</scp>) complexes derived from 2-phenyl-4-pyrimidinecarboxylate. RSC Advances, 2015, 5, 96855-96861.	3.6	2
56	Single-Ion Magnet Investigation of ABAB-Type Tetrachloro- and Tetraalkoxy-Substituted Bis(phthalocyaninato) Terbium Double-Decker with D 2 Symmetrical Ligand Field. European Journal of Inorganic Chemistry, 2019, 2019, 1329-1334.	2.0	2
57	Enhancing the magnetic performance of pyrazine- <i>N</i> -oxide bridged dysprosium chains through controlled variation of ligand coordination modes. Dalton Transactions, 2021, 50, 7048-7055.	3.3	2
58	Spin-canting and weak ferromagnetism in two novel 1D alternating chains with single cis-end-to-end azido bridges. Science China Chemistry, 2012, 55, 1031-1036.	8.2	1