Bin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3406807/publications.pdf

Version: 2024-02-01

101535 128286 6,672 59 36 60 h-index citations g-index papers 63 63 63 8426 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 3876-3879.	13.7	817
2	Thermally stable single atom Pt/m -Al2O3 for selective hydrogenation and CO oxidation. Nature Communications, 2017, 8, 16100.	12.8	545
3	Emerging combination strategies with phototherapy in cancer nanomedicine. Chemical Society Reviews, 2020, 49, 8065-8087.	38.1	427
4	Stabilizing a Platinum ₁ Singleâ€Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. Angewandte Chemie - International Edition, 2016, 55, 8319-8323.	13.8	350
5	Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chemical Communications, 2013, 49, 9803.	4.1	303
6	Toward Understanding the Growth Mechanism: Tracing All Stable Intermediate Species from Reduction of Au(I)–Thiolate Complexes to Evolution of Au ₂₅ Nanoclusters. Journal of the American Chemical Society, 2014, 136, 10577-10580.	13.7	294
7	Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coordination Chemistry Reviews, 2016, 322, 1-29.	18.8	281
8	Balancing the Rate of Cluster Growth and Etching for Gramâ€Scale Synthesis of Thiolateâ€Protected Au ₂₅ Nanoclusters with Atomic Precision. Angewandte Chemie - International Edition, 2014, 53, 4623-4627.	13.8	276
9	Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chemical Society Reviews, 2021, 50, 9152-9201.	38.1	254
10	Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chemistry, 2014, 16, 2432-2437.	9.0	239
11	In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nature Communications, 2019, 10, 1330.	12.8	177
12	Atomically Dispersed Pt ₁ –Polyoxometalate Catalysts: How Does Metal–Support Interaction Affect Stability and Hydrogenation Activity?. Journal of the American Chemical Society, 2019, 141, 8185-8197.	13.7	147
13	Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light: Science and Applications, 2020, 9, 161.	16.6	145
14	The support effect on the size and catalytic activity of thiolated Au ₂₅ nanoclusters as precatalysts. Nanoscale, 2015, 7, 6325-6333.	5.6	142
15	Electrostatic Stabilization of Single-Atom Catalysts by Ionic Liquids. CheM, 2019, 5, 3207-3219.	11.7	131
16	Versatile Applications of Metal Singleâ€Atom @ 2D Material Nanoplatforms. Advanced Science, 2019, 6, 1901787.	11.2	128
17	NIRâ€I Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. Advanced Functional Materials, 2021, 31, 2101625.	14.9	126
18	Carbon-based nanozymes for biomedical applications. Nano Research, 2021, 14, 570-583.	10.4	118

#	Article	IF	Citations
19	Soliton mode-locked fiber laser based on topological insulator Bi_2Te_3 nanosheets at 2  μm. Photonic Research, 2015, 3, 72.	^{CS} 7.0	117
20	Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. Journal of Materials Chemistry A, 2017, 5, 8954-8963.	10.3	117
21	Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2022, 122, 1127-1207.	47.7	103
22	Insights into Singleâ€Atom Metal–Support Interactions in Electrocatalytic Water Splitting. Small Methods, 2019, 3, 1800481.	8.6	94
23	Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. Research, 2020, 2020, 2624617.	5.7	93
24	Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system. Optics Letters, 2014, 39, 1849.	3.3	90
25	Stabilizing a Platinum ₁ Singleâ€Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. Angewandte Chemie, 2016, 128, 8459-8463.	2.0	80
26	TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today, 2021, 40, 101243.	11.9	76
27	Atomically Dispersed Rhodium on Self-Assembled Phosphotungstic Acid: Structural Features and Catalytic CO Oxidation Properties. Industrial & Engineering Chemistry Research, 2017, 56, 3578-3587.	3.7	75
28	High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 $\hat{l}\frac{1}{4}$ m. Optics Express, 2014, 22, 19947.	3.4	61
29	Recent developments in mid-infrared fiber lasers: Status and challenges. Optics and Laser Technology, 2020, 132, 106497.	4.6	57
30	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	27.0	57
31	Soft, Oxidative Stripping of Alkyl Thiolate Ligands from Hydroxyapatiteâ€Supported Gold Nanoclusters for Oxidation Reactions. Chemistry - an Asian Journal, 2016, 11, 532-539.	3.3	55
32	Highly Dispersed Single-Atom Pt and Pt Clusters in the Fe-Modified KL Zeolite with Enhanced Selectivity for <i>n</i> -Heptane Aromatization. ACS Applied Materials & Therfaces, 2019, 11, 29858-29867.	8.0	49
33	Ag–Pd and CuO–Pd nanoparticles in a hydroxyl-group functionalized ionic liquid: synthesis, characterization and catalytic performance. Catalysis Science and Technology, 2015, 5, 1683-1692.	4.1	46
34	Semiconductor saturable absorber mirror passively Q-switched fiber laser near $2\hat{A}^{1}$ 4m. Applied Optics, 2012, 51, 5664.	1.8	43
35	Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54621-54647.	8.0	43
36	Direct covalent modification of black phosphorus quantum dots with conjugated polymers for information storage. Nanoscale, 2019, 11, 3527-3533.	5.6	40

#	Article	IF	CITATIONS
37	Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 ξm. Optics Express, 2014, 22, 25976.	3.4	38
38	Recent advances in OD nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors. Journal of Materials Chemistry C, 2020, 8, 7272-7299.	5.5	35
39	Towards Rational Design of Nanoparticle Catalysis in Ionic Liquids. Catalysts, 2013, 3, 543-562.	3.5	34
40	Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization. Journal of Catalysis, 2018, 365, 163-173.	6.2	34
41	Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. Journal of Materials Chemistry B, 2020, 8, 7076-7120.	5.8	34
42	Advanced nanomaterials for hypoxia tumor therapy: challenges and solutions. Nanoscale, 2020, 12, 21497-21518.	5.6	32
43	Smart Acidâ€Activatable Selfâ€Assembly of Black Phosphorous as Photosensitizer to Overcome Poor Tumor Retention in Photothermal Therapy. Advanced Functional Materials, 2020, 30, 2003338.	14.9	25
44	Single-atom catalysts for thermal- and electro-catalytic hydrogenation reactions. Journal of Materials Chemistry A, 2022, 10, 5743-5757.	10.3	22
45	FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCl Insight, 2022, 7, .	5.0	20
46	Valorization of Renewable Carbon Resources for Chemicals. Chimia, 2015, 69, 120.	0.6	19
47	Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49281-49296.	8.0	16
48	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chemical Engineering Journal, 2022, 430, 133040.	12.7	14
49	Synergistic Photothermal and Chemical Therapy by Smart Dualâ€Functional Graphdiyne Nanosheets for Treatment of Parkinson's Disease. Advanced Therapeutics, 2021, 4, 2100082.	3.2	13
50	Covalent Functionalization of Black Phosphorus with Conjugated Polymer for Information Storage. Angewandte Chemie, 2018, 130, 4633-4638.	2.0	11
51	Gold Nanoclusterâ€Modified Titanium Nitride for Ultrafast Photonics Applications. Advanced Electronic Materials, 2021, 7, 2000954.	5.1	11
52	Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics. Photonics Research, 2020, 8, 1687.	7.0	10
53	Crystalline phase induced Raman enhancement on molybdenum carbides. Inorganic Chemistry Frontiers, 2022, 9, 2575-2582.	6.0	10
54	Facile Synthesis of Monodispersed Titanium Nitride Quantum Dots for Harmonic Mode-Locking Generation in an Ultrafast Fiber Laser. Nanomaterials, 2022, 12, 2280.	4.1	10

#	Article	IF	CITATIONS
55	Selective Degradation of Organosolv Lignin over Noble Metal Catalyst in a Two-Step Process. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 2343-2348.	4.9	7
56	Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. Coordination Chemistry Reviews, 2021, 432, 213697.	18.8	5
57	Surface isolation of single metal complexes or clusters by a coating sieving layer via atomic layer deposition. Cell Reports Physical Science, 2022, 3, 100787.	5.6	5
58	Spontaneous Electroless Deposition of Ultrafine Pd Nanoparticles on Poly(phenylene butadiynylene)s for the Hydroxycarbonylation of Aryl Iodides. ChemistrySelect, 2016, 1, 1832-1836.	1.5	3
59	New insights to atherosclerosis management: Role of nanomaterials. Applied Materials Today, 2022, 27, 101466.	4.3	3