Guilhem Godeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3406681/publications.pdf

Version: 2024-02-01

516215 66 891 16 citations h-index papers

26 g-index

66 66 66 docs citations times ranked all docs

1002 citing authors

552369

#	Article	IF	CITATIONS
1	Investigation on dung beetle's (Heliocopris Hope, 1838) chitosan valorisation for hydrogel 3D printing. International Journal of Biological Macromolecules, 2022, 199, 172-180.	3.6	5
2	Adsorption of Organic Dyes on Magnetic Iron Oxide Nanoparticles. Part I: Mechanisms and Adsorption-Induced Nanoparticle Agglomeration. ACS Omega, 2021, 6, 19086-19098.	1.6	28
3	Adsorption of Organic Dyes on Magnetic Iron Oxide Nanoparticles. Part II: Field-Induced Nanoparticle Agglomeration and Magnetic Separation. Langmuir, 2021, 37, 10612-10623.	1.6	4
4	Bioinspired and Post-Functionalized 3D-Printed Surfaces with Parahydrophobic Properties. Biomimetics, 2021, 6, 71.	1.5	5
5	Improved Magneto-Microfluidic Separation of Nanoparticles through Formation of the β-Cyclodextrin–Curcumin Inclusion Complex. Langmuir, 2021, 37, 14345-14359.	1.6	3
6	The influence of bath temperature on the one-step electrodeposition of non-wetting copper oxide coatings. Applied Surface Science, 2020, 503, 144094.	3.1	15
7	Investigation on Mecynorhina torquata Drury, 1782 (Coleoptera, Cetoniidae, Goliathini) cuticle: Surface properties, chitin and chitosan extraction. International Journal of Biological Macromolecules, 2020, 164, 1164-1173.	3.6	8
8	Chitosan Extraction from Goliathus orientalis Moser, 1909: Characterization and Comparison with Commercially Available Chitosan. Biomimetics, 2020, 5, 15.	1.5	7
9	Wetting Transition from Hydrophilic to Superhydrophobic over Dendrite Copper Leaves Grown on Steel Meshes. Journal of Bionic Engineering, 2019, 16, 719-729.	2.7	12
10	Fabrication of Superhydrophobic Hierarchical Surfaces by Square Pulse Electrodeposition: Copperâ€Based Layers on Gold/Silicon (100) Substrates. ChemPlusChem, 2019, 84, 368-373.	1.3	11
11	Micro- and nanoscopic observations of sexual dimorphisms in Mecynorhina polyphemus confluens (Kraatz, 1890) (Coleoptera, Cetoniidae, Goliathini) and consequences for surface wettability. Arthropod Structure and Development, 2019, 49, 10-18.	0.8	4
12	Variations in surface structures and wettability in the genus <i>Pachnoda</i> Burmeister. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 181-189.	0.7	2
13	A Templateless Electropolymerization Approach to Porous Hydrophobic Nanostructures Using 3,4â€Phenylenedioxythiophene Monomers with Electronâ€Withdrawing Groups. ChemNanoMat, 2018, 4, 656-662.	1.5	14
14	Nanofoldâ€decorated surfaces from the electrodeposition of diâ€alkylâ€cyclopentadithiophenes. Polymers for Advanced Technologies, 2018, 29, 1170-1181.	1.6	2
15	Nanocups and hollow microspheres formed by a one-step and templateless electropolymerization of thieno[3,4-b]thiophene derivatives as a function of the substituent. Electrochimica Acta, 2018, 269, 462-478.	2.6	17
16	Intrinsically water-repellent copper oxide surfaces; An electro-crystallization approach. Applied Surface Science, 2018, 443, 191-197.	3.1	15
17	A Templateless Electropolymerization Approach to Nanorings Using Substituted 3,4â€Naphthalenedioxythiophene (NaPhDOT) Monomers. ChemNanoMat, 2018, 4, 140-147.	1.5	11
18	Variation of Goliathus orientalis (Moser, 1909) Elytra Nanostructurations and Their Impact on Wettability. Biomimetics, 2018, 3, 6.	1.5	9

#	Article	IF	CITATIONS
19	Superhydrophobic, superoleophobic and underwater superoleophobic conducting polymer films. Surface Innovations, 2018, 6, 181-204.	1.4	13
20	Superhydrophobic polypyrene films to prevent Staphylococcus aureus and Pseudomonas aeruginosa biofilm adhesion on surfaces: high efficiency deciphered by fluorescence microscopy. Photochemical and Photobiological Sciences, 2018, 17, 1023-1035.	1.6	10
21	Rapid, Templateâ€Less Patterning of Polymeric Interfaces for Controlled Wettability via in Situ Heterogeneous Photopolymerizations. Macromolecular Chemistry and Physics, 2018, 219, 1800090.	1.1	1
22	One-pot Staudinger Ureation reaction to develop superhydrophobic/oleophobic surfaces with urea linkers. Materials and Design, 2017, 114, 116-122.	3.3	5
23	Controlling the wettability of mesh substrates by post -functionalization using the Huisgen reaction. Materials Chemistry and Physics, 2017, 195, 67-73.	2.0	0
24	A travel in the Echeveria genus wettability's world. Applied Surface Science, 2017, 411, 291-302.	3.1	14
25	Superhydrophobic properties of electrodeposited fluorinated polypyrenes. Journal of Fluorine Chemistry, 2017, 193, 73-81.	0.9	16
26	pHâ€Driven Wetting Switchability of Electrodeposited Superhydrophobic Copolymers of Pyrene Bearing Acid Functions and Fluorinated Chains. ChemPhysChem, 2017, 18, 3429-3436.	1.0	9
27	Combining Staudinger Reductive Amination and Amidification for the Control of Surface Hydrophobicity and Water Adhesion by Introducing Heterobifunctional Groups: Post―and Anteâ€Approach. Macromolecular Chemistry and Physics, 2017, 218, 1700250.	1.1	2
28	Nanoparticles covered surfaces for post-functionalization with aromatic groups to obtain parahydrophobic surface with high water adhesion (petal effect). Journal of Bionic Engineering, 2017, 14, 468-475.	2.7	1
29	Electrodeposited Poly(thieno[3,2â€ <i>b</i>]thiophene) Films for the Templateless Formation of Porous Structures by Galvanostatic and Pulse Deposition. ChemPlusChem, 2017, 82, 1351-1358.	1.3	18
30	Superhydrophobic and superoleophobic poly(3,4-ethylenedioxypyrrole) polymers synthesized using the Staudinger-Vilarrasa reaction. Pure and Applied Chemistry, 2017, 89, 1751-1760.	0.9	2
31	Surfaces Bearing Fluorinated Nucleoperfluorolipids for Potential Anti-Graffiti Surface Properties. Coatings, 2017, 7, 220.	1.2	7
32	Bifunctionalized Monomers for Surfaces with Controlled Hydrophobicity. ChemPlusChem, 2017, 82, 1245-1252.	1.3	1
33	Staudinger-Vilarassa reaction versus Huisgen reaction for the control of surface hydrophobicity and water adhesion. Polymers for Advanced Technologies, 2016, 27, 993-998.	1.6	8
34	Superhydrophobic/highly oleophobic surfaces based on poly(3,4-propylenedioxythiophene) surface post-functionalization. Journal of Polymer Research, 2016, 23, 1.	1.2	6
35	Poly(3,4-propylenedioxythiophene) mono-azide and di-azide as platforms for surface post -functionalization. European Polymer Journal, 2016, 78, 38-45.	2.6	9
36	Perfluorinated ProDOT monomers for superhydrophobic/oleophobic surfaces elaboration. Journal of Fluorine Chemistry, 2016, 191, 90-96.	0.9	7

3

#	Article	IF	Citations
37	A template-free approach to nanotube-decorated polymer surfaces using 3,4-phenylenedioxythiophene (PhEDOT) monomers. Journal of Materials Chemistry A, 2016, 4, 17308-17323.	5.2	44
38	Staudinger-Ureation: A new and fast reaction for surface post-functionalization. Materials Today Communications, 2016, 8, 165-171.	0.9	3
39	Macromol. Chem. Phys. 19/2016. Macromolecular Chemistry and Physics, 2016, 217, 2200-2200.	1.1	O
40	Azido Platform Surfaces for Postâ€Functionalization with Aromatic Groups Using the Huisgen Reaction to Obtain High Water Adhesion. Macromolecular Chemistry and Physics, 2016, 217, 2107-2115.	1.1	4
41	Post-functionalization of plasma treated polycarbonate substrates: An efficient way to hydrophobic, oleophobic plastics. Applied Surface Science, 2016, 387, 28-35.	3.1	19
42	Switchable surfaces from highly hydrophobic to highly hydrophilic using covalent imine bonds. Journal of Applied Polymer Science, 2016, 133, .	1.3	16
43	Switchable Surface Wettability by Using Boronic Ester Chemistry. ChemPhysChem, 2016, 17, 305-309.	1.0	8
44	Nucleoside surfaces as a platform for the control of surface hydrophobicity. RSC Advances, 2016, 6, 62471-62477.	1.7	3
45	Hydrocarbon/perfluorocarbon mixed chain azides for surface post-functionalization. Journal of Fluorine Chemistry, 2016, 184, 8-15.	0.9	6
46	Staudinger–Vilarrasa reaction to develop novel monomers with amide bonds for superhydrophobic properties. Progress in Organic Coatings, 2016, 90, 431-437.	1.9	6
47	Electrodeposition of Polypyrenes with Tunable Hydrophobicity, Water Adhesion, and Fluorescence Properties. Journal of Physical Chemistry C, 2016, 120, 7077-7087.	1.5	24
48	Postfunctionalization of Azido or Alkyne Poly(3,4â€ethylenedioxythiophene) Surfaces: Superhydrophobic and Parahydrophobic Surfaces. Macromolecular Chemistry and Physics, 2016, 217, 554-561.	1.1	8
49	Nanoparticle covered surfaces: An efficient way to enhance superhydrophobic properties. Materials and Design, 2016, 92, 911-918.	3.3	17
50	Stepâ€byâ€Step Layerâ€byâ€Layer Assembly Using 1,2,3â€Triazole as a Platform for Controlled Multicharged and Multifunctional Coatings. ChemPlusChem, 2015, 80, 1691-1695.	1.3	3
51	Azidomethyl-EDOT as a Platform for Tunable Surfaces with Nanostructures and Superhydrophobic Properties. Journal of Physical Chemistry B, 2015, 119, 6873-6877.	1.2	25
52	Formulation of Highly Functionalizable DNA Nanoparticles Based on 1,2â€Dithiolane Derivatives. ChemBioChem, 2015, 16, 792-804.	1.3	4
53	Ante versus post-functionalization to control surface structures with superhydrophobic and superoleophobic properties. RSC Advances, 2015, 5, 63945-63951.	1.7	9
54	Staudinger Vilarassa reaction: A powerful tool for surface modification and superhydrophobic properties. Journal of Colloid and Interface Science, 2015, 457, 72-77.	5.0	20

#	Article	IF	CITATIONS
55	Switchable and reversible superhydrophobic and oleophobic surfaces by redox response using covalent S–S bond. Reactive and Functional Polymers, 2015, 96, 44-49.	2.0	11
56	A reversible supramolecular assembly containing ionic interactions and disulfide linkages. New Journal of Chemistry, 2014, 38, 5186-5189.	1.4	7
57	In Vivo Characterization of Dynein-Driven nanovectors Using Drosophila Oocytes. PLoS ONE, 2013, 8, e82908.	1.1	3
58	Nucleic Acid Based Fluorinated Derivatives: New Tools for Biomedical Applications. Applied Sciences (Switzerland), 2012, 2, 245-259.	1.3	23
59	From Brittle to Pliant Viscoelastic Materials with Solid State Linear Polyphosphonium–Carboxylate Assemblies. Macromolecules, 2012, 45, 2509-2513.	2.2	29
60	Glycoside nucleoside lipids (GNLs): An intrusion into the glycolipids' world?. Comptes Rendus Chimie, 2012, 15, 29-36.	0.2	10
61	Glycosyl-nucleoside fluorinated amphiphiles as components of nanostructured hydrogels. Tetrahedron Letters, 2010, 51, 1012-1015.	0.7	38
62	Fluorocarbon oligonucleotide conjugates for nucleic acids delivery. MedChemComm, 2010, 1, 76.	3.5	29
63	Glycosyl–nucleoside–lipid based supramolecular assembly as a nanostructured material with nucleic acid delivery capabilities. Chemical Communications, 2009, , 5127.	2.2	56
64	Glycosyl-Nucleoside Lipids as Low-Molecular-Weight Gelators. Langmuir, 2009, 25, 8447-8450.	1.6	66
65	Lipid-Conjugated Oligonucleotides via "Click Chemistry―Efficiently Inhibit Hepatitis C Virus Translation. Journal of Medicinal Chemistry, 2008, 51, 4374-4376.	2.9	88
66	Amphiphilic Copolymer for Delivery of Xenobiotics: <i>In Vivo</i> Studies in a Freshwater Invertebrate, a Mesostominae Flatworm. Bioconjugate Chemistry, 2008, 19, 891-898.	1.8	11