
Shaojun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3406498/publications.pdf Version: 2024-02-01

SHAOUNITU

#	Article	IF	CITATIONS
1	The dislocation-based fatigue deformation mechanism of a RAFM steel under multi-axial loadings. Journal of Nuclear Materials, 2022, 558, 153324.	2.7	10
2	Enhanced fatigue property by fabricating a gradient nanostructured surface layer in a reduced-activation steel. Progress in Natural Science: Materials International, 2022, 32, 385-391.	4.4	4
3	High-temperature fatigue behavior and cyclic deformation of a gradient nanostructured RAFM steel. International Journal of Fatigue, 2022, 163, 107013.	5.7	5
4	Effect of silicon on oxidation behavior of 9Cr-ODS steel at 650 ŰC. Fusion Engineering and Design, 2021, 167, 112384.	1.9	6
5	Interface characteristics and solute segregation behavior on CLAM steel. Materials Research Express, 2019, 6, 116555.	1.6	1
6	Effect of simulated stress-relieving heat treatment on microstructure and tensile properties of CLAM steel. Fusion Engineering and Design, 2019, 148, 111287.	1.9	3
7	Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450â€ ⁻ °C–550â€ ⁻ °C. Journal of Nuclear Materials, 2018, 501, 200-207.	2.7	12
8	Microstructure evolution and toughness degeneration of 9Cr martensitic steel after aging at 550°C for 20000Âh. Journal of Materials Science, 2018, 53, 4574-4581.	3.7	6
9	Microstructure anisotropy and its effect on mechanical properties of reduced activation ferritic/martensitic steel fabricated by selective laser melting. Journal of Nuclear Materials, 2018, 500, 33-41.	2.7	39
10	Effect of Tantalum content on the low cycle fatigue properties of CLAM steel at 823 K. Fusion Engineering and Design, 2017, 114, 211-218.	1.9	3
11	A new method for fast statistical measurement of interfacial misfit strain around nano-scale semi-coherent particles. RSC Advances, 2017, 7, 28506-28512.	3.6	12
12	Effect of Tantalum Content on Creep Properties of CLAM Steel. Journal of Fusion Energy, 2016, 35, 193-198.	1.2	5
13	Effect of Thermal Aging on Microstructure and Mechanical Properties of China Low-Activation Martensitic Steel at 550°C. Nuclear Engineering and Technology, 2016, 48, 518-524.	2.3	48
14	Microstructure evolution of the oxide dispersion strengthened CLAM steel during mechanical alloying process. Fusion Engineering and Design, 2016, 112, 460-467.	1.9	10
15	Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints. Fusion Engineering and Design, 2016, 112, 440-449.	1.9	1
16	Low cycle fatigue properties of CLAM steel at 450 ŰC and 550 ŰC. Fusion Engineering and Design, 2016, 112, 213-217.	1.9	7
17	Overview on the welding technologies of CLAM steel and the DFLL TBM fabrication. Nuclear Materials and Energy, 2016, 9, 317-323.	1.3	8
18	Effect of tantalum content on microstructure and tensile properties of CLAM steel. Fusion Engineering and Design, 2016, 104, 21-27.	1.9	21

Shaojun Liu

#	Article	IF	CITATIONS
19	High cycle fatigue properties of CLAM steel at 723 K and 823 K. Fusion Engineering and Design, 2015, 100, 608-613.	1.9	3
20	Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel. Journal of Nuclear Materials, 2014, 455, 486-490.	2.7	7
21	Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K. Journal of Nuclear Materials, 2014, 455, 640-644.	2.7	24
22	Fracture toughness of China low activation martensitic (CLAM) steel at room temperature. Fusion Engineering and Design, 2014, 89, 426-430.	1.9	6
23	Fabrication Technique Development of Dual Functional Lithium Lead Test Blanket Module. Fusion Science and Technology, 2014, 66, 180-186.	1.1	5
24	Effect of post-weld heat treatment on the mechanical properties of electron beam welded joints for CLAM steel. Journal of Nuclear Materials, 2013, 442, 512-517.	2.7	30
25	Preliminary study of HDA coating on CLAM steel followed by high temperature oxidation. Journal of Nuclear Materials, 2013, 442, S597-S602.	2.7	25
26	Microstructure and its influence on mechanical properties of CLAM steel. Fusion Engineering and Design, 2012, 87, 1628-1632.	1.9	49
27	Compatibility of SiC with static liquid LiPb at 800°C. Fusion Engineering and Design, 2011, 86, 2655-2657.	1.9	7
28	Influence of different cooling rates on the microstructure of the HAZ and welding CCT diagram of CLAM steel. Fusion Engineering and Design, 2011, 86, 2616-2619.	1.9	46
29	Effects of tube rolling and heat treatment on microstructure and mechanical properties of CLAM rectangular tube. Fusion Engineering and Design, 2011, 86, 2602-2606.	1.9	7
30	Latest progress on R&D of ITER DFLL-TBM in China. Fusion Engineering and Design, 2011, 86, 2611-2615.	1.9	27
31	Influence of Quenching Process on Structure and Microhardness of CLAM Steel. Fusion Science and Technology, 2011, 60, 394-398.	1.1	2
32	Progress in development of CLAM steel and fabrication of small TBM in China. Journal of Nuclear Materials, 2011, 417, 85-88.	2.7	68
33	Progress in development of fabrication of small TBMs for EAST and ITER. Fusion Engineering and Design, 2010, 85, 2192-2195.	1.9	10
34	Compatibility of atmospheric plasma sprayed Al2O3 coatings on CLAM with liquid LiPb. Fusion Engineering and Design, 2010, 85, 1469-1473.	1.9	19
35	Vacuum plasma sprayed FeAl/Al2O3 functionally graded coatings for fusion reactor applications. Fusion Engineering and Design, 2010, 85, 1542-1545.	1.9	16
36	Influence of non-metal inclusions on mechanical properties of CLAM steel. Fusion Engineering and Design, 2009, 84, 1214-1218.	1.9	43

#	Article	lF	CITATIONS
37	Welding techniques development of CLAM steel for Test Blanket Module. Fusion Engineering and Design, 2009, 84, 1184-1187.	1.9	41
38	Preliminary analysis of irradiation effects on CLAM after low dose neutron irradiation. Journal of Nuclear Materials, 2009, 386-388, 312-314.	2.7	17