Mariya Mironova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3406353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphology and transport properties of membranes obtained by coagulation of cellulose solutions in isobutanol. Carbohydrate Polymers, 2021, 254, 117472.	10.2	9
2	The Thermal Behavior of Lyocell Fibers Containing Bis(trimethylsilyl)acetylene. Polymers, 2021, 13, 537.	4.5	1
3	A Role of Coagulant in Structure Formation of Fibers and Films Spun from Cellulose Solutions. Materials, 2020, 13, 3495.	2.9	10
4	Composite Fibers Based on Cellulose and Vinyltriethoxysilane as Precursors of Carbon Materials. Polymer Science - Series B, 2020, 62, 152-162.	0.8	8
5	Composite Fibers From Cellulose Solutions with Additives of Bis (Trimethylsilyl) Acetylene and Alkoxysilanes: Rheology, Structure and Properties. Fibre Chemistry, 2019, 51, 26-31.	0.2	4
6	The Role of Isobutanol as a Precipitant of Cellulose Films Formed from N-Methylmorpholine N-Oxide Solutions: Phase State and Structural and Morphological Features. Polymer Science - Series A, 2019, 61, 598-609.	1.0	8
7	Improvement in Carbonization Efficiency of Cellulosic Fibres Using Silylated Acetylene and Alkoxysilanes. Fibers, 2019, 7, 84.	4.0	12
8	From Polyacrylonitrile, its Solutions, and Filaments to Carbon Fibers <scp>II</scp> . Spinning <scp>PAN</scp> â€Precursors and their Thermal Treatment. Advances in Polymer Technology, 2018, 37, 1099-1113.	1.7	25
9	From Polyacrylonitrile, Its Solutions, and Filaments to Carbon Fibers: I. Phase State and Rheology of Basic Polymers and Their Solutions. Advances in Polymer Technology, 2018, 37, 1076-1084.	1.7	19
10	Composite fibres based on cellulose and vinyltriethoxysilane: preparation, properties and carbonization. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012032.	0.6	3
11	Structural and Morphological Features of Carbon—Silicon-Carbide Fibers Based on Cellulose and Triethoxyvinylsilane. Fibre Chemistry, 2018, 50, 79-84.	0.2	8
12	Effect of silica and clay minerals on rheology of heavy crude oil emulsions. Fuel, 2018, 232, 290-298.	6.4	39
13	Composite Fibers Based on Cellulose and Tetraetoxysilane: Preparation, Structure and Properties. Fibre Chemistry, 2017, 49, 101-107.	0.2	10
14	Flow of heavy crude oil-in-water emulsions in long capillaries simulating pipelines. Journal of Petroleum Science and Engineering, 2017, 157, 117-123.	4.2	14
15	Carbon—Silicon-Carbide Fibers Prepared from Solid Solutions of Cellulose in N-Methylmorpholine-N-Oxide with Added Tetraethoxysilane. Fibre Chemistry, 2017, 49, 231-236.	0.2	12
16	Heavy oil as an emulsion: Composition, structure, and rheological properties. Colloid Journal, 2016, 78, 735-746.	1.3	28
17	Effect of the rigid core of the filler on the properties of melt-mixed polystyrene/core–shell particle nanocomposites. Materials Chemistry and Physics, 2015, 156, 16-28.	4.0	6
18	Phase structure and properties of blends based on polystyrene and carbosilane dendrimers. Polymer Science - Series A 2015, 57, 586-595	1.0	4

MARIYA MIRONOVA

#	Article	IF	CITATIONS
19	Comb-Like Polymethylsiloxanes. Synthesis, Structure and Properties. Silicon, 2015, 7, 177-189.	3.3	11
20	Structure and properties of composites based on polyethylene oxide and molecular silicasol. Nanotechnologies in Russia, 2013, 8, 81-91.	0.7	4
21	Rheological properties of poly(1-trimethylsilyl-1-propyne) solutions. Polymer Science - Series A, 2013, 55, 510-517.	1.0	8
22	Rheological and relaxation properties of MQ copolymers. Polymer Science - Series A, 2012, 54, 177-186.	1.0	10
23	A multifunctional mechanical Fourier spectrometer. Polymer Science - Series A, 2011, 53, 271-280.	1.0	Ο
24	Rheology of carbosilane dendrimers with various types of end groups. Polymer Science - Series A, 2010, 52, 1156-1162.	1.0	19