Geertje M F Van Der Heijden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3406002/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	12.6	1,443
2	The 2010 Amazon Drought. Science, 2011, 331, 554-554.	12.6	912
3	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	12.6	873
4	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	27.8	796
5	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	7.3	487
6	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	12.6	443
7	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	27.8	439
8	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
9	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 2013, 22, 1261-1271.	5.8	365
10	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
11	Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120295.	4.0	264
12	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
13	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	12.8	214
14	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	4.9	201
15	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
16	Lianas reduce carbon accumulation and storage in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13267-13271.	7.1	147
17	Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.	4.5	143
18	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	10.3	122

#	Article	IF	CITATIONS
19	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116
20	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	3.3	113
21	Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests. Biotropica, 2013, 45, 682-692.	1.6	98
22	Low stocks of coarse woody debris in a southwest Amazonian forest. Oecologia, 2007, 152, 495-504.	2.0	87
23	Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences, 2009, 6, 2217-2226.	3.3	85
24	What controls liana success in Neotropical forests?. Global Ecology and Biogeography, 2008, 17, 372-383.	5.8	81
25	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	3.2	75
26	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	9.5	74
27	Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology, 2014, 95, 3008-3017.	3.2	72
28	Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, 2020, 369, 838-841.	12.6	68
29	Infestation of trees by lianas in a tropical forest in Amazonian Peru. Journal of Vegetation Science, 2008, 19, 747-756.	2.2	63
30	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	6.4	63
31	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
32	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57
33	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
34	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
35	Lianas have a seasonal growth advantage over coâ€occurring trees. Ecology, 2019, 100, e02655.	3.2	43
36	Environmental effects on Neotropical liana species richness. Journal of Biogeography, 2009, 36, 1561-1572.	3.0	39

#	Article	IF	CITATIONS
37	The World's Tallest Tropical Tree in Three Dimensions. Frontiers in Forests and Global Change, 2019, 2,	2.3	38
38	A view from above: Unmanned aerial vehicles (<scp>UAV</scp> s) provide a new tool for assessing liana infestation in tropical forest canopies. Journal of Applied Ecology, 2019, 56, 902-912.	4.0	36
39	Variation in the sensitivity of DOC release between different organic soils following H2SO4 and sea-salt additions. European Journal of Soil Science, 2011, 62, 267-284.	3.9	32
40	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
41	Environmental drivers of forest structure and stem turnover across Venezuelan tropical forests. PLoS ONE, 2018, 13, e0198489.	2.5	22
42	Calibrating the liana crown occupancy index in Amazonian forests. Forest Ecology and Management, 2010, 260, 549-555.	3.2	20
43	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	1.8	19
44	Effect of lianas on forestâ€level tree carbon accumulation does not differ between seasons: Results from a liana removal experiment in Panama. Journal of Ecology, 2019, 107, 1890-1900.	4.0	17
45	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
46	Reply to Verbeeck and Kearsley: Addressing the challenges of including lianas in global vegetation models. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5-6.	7.1	15
47	Causes and consequences of liana infestation in southern Amazonia. Journal of Ecology, 2020, 108, 2184-2197.	4.0	13
48	Remote sensing liana infestation in an aseasonal tropical forest: addressing mismatch in spatial units of analyses. Remote Sensing in Ecology and Conservation, 2021, 7, 397-410.	4.3	8
49	Effects of acid sulphate on <scp>DOC</scp> release in mineral soils: the influence of <scp>SO₄²</scp> ^{â^'} retention and <scp>Al</scp> release. European Journal of Soil Science, 2013, 64, 537-544.	3.9	6
50	Making (remote) sense of lianas. Journal of Ecology, 2022, 110, 498-513.	4.0	5
51	Lianas Significantly Reduce Aboveground and Belowground Carbon Storage: A Virtual Removal Experiment. Frontiers in Forests and Global Change, 2021, 4, .	2.3	4
52	Lianas decelerate tropical forest thinning during succession. Ecology Letters, 2022, 25, 1432-1441.	6.4	3
53	Detection of Spatial and Temporal Patterns of Liana Infestation Using Satellite-Derived Imagery. Remote Sensing, 2021, 13, 2774.	4.0	2