Ujjwal Pal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3405955/publications.pdf

Version: 2024-02-01

	257450	302126
1,621	24	39
citations	h-index	g-index
50	5 0	22.4.4
53	53	2244
docs citations	times ranked	citing authors
	citations 53	1,621 24 citations h-index 53 53

#	Article	IF	CITATIONS
1	Co-MOF as a sacrificial template: manifesting a new Co ₃ O ₄ /TiO ₂ system with a pâ \in "n heterojunction for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 20288-20296.	10.3	110
2	Nanocrystalline Magnesium Oxideâ€Stabilized Palladium(0): An Efficient and Reusable Catalyst for Selective Reduction of Nitro Compounds. Advanced Synthesis and Catalysis, 2008, 350, 822-827.	4.3	94
3	Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH. Journal of CO2 Utilization, 2019, 31, 207-214.	6.8	91
4	The facile hydrothermal synthesis of CuO@ZnO heterojunction nanostructures for enhanced photocatalytic hydrogen evolution. New Journal of Chemistry, 2019, 43, 6794-6805.	2.8	82
5	Synthesis of MOF templated Cu/CuO@TiO ₂ nanocomposites for synergistic hydrogen production. Physical Chemistry Chemical Physics, 2016, 18, 4780-4788.	2.8	77
6	Ternary rGO/InVO ₄ /Fe ₂ O ₃ Z-Scheme Heterostructured Photocatalyst for CO ₂ Reduction under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8201-8211.	6.7	67
7	Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Physical Chemistry Chemical Physics, 2015, 17, 20407-20415.	2.8	65
8	Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation. Solar Energy, 2020, 196, 540-548.	6.1	55
9	Visible light induced hydrogen production over thiophenothiazine-based dye sensitized TiO ₂ photocatalyst in neutral water. RSC Advances, 2015, 5, 31415-31421.	3.6	47
10	Hierarchical Porous TiO ₂ Embedded Unsymmetrical Zinc–Phthalocyanine Sensitizer for Visible-Light-Induced Photocatalytic H ₂ Production. Journal of Physical Chemistry C, 2018, 122, 495-502.	3.1	46
11	Effect of donor-donor- π -acceptor architecture of triphenylamine-based organic sensitizers over TiO 2 photocatalysts for visible-light-driven hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 9069-9079.	7.1	45
12	An Efficient Synthesis of Organic Carbonates using Nanocrystalline Magnesium Oxide. Advanced Synthesis and Catalysis, 2007, 349, 1671-1675.	4.3	44
13	Robust Co ₉ S ₈ @CdIn ₂ S ₄ Cage for Efficient Photocatalytic H ₂ Evolution. Journal of Physical Chemistry C, 2021, 125, 5099-5109.	3.1	44
14	Polyethylenimine-Modified Zeolite 13X for CO ₂ Capture: Adsorption and Kinetic Studies. ACS Omega, 2019, 4, 16441-16449.	3.5	40
15	Controlled Loading of MoS ₂ on Hierarchical Porous TiO ₂ for Enhanced Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 11950-11962.	3.1	40
16	Fabrication of mixed phase TiO ₂ heterojunction nanorods and their enhanced photoactivities. Physical Chemistry Chemical Physics, 2016, 18, 15260-15268.	2.8	39
17	Oriented Attachments and Formation of Ring-on-Disk Heterostructure Au–Cu ₃ P Photocatalysts. Chemistry of Materials, 2016, 28, 1872-1878.	6.7	38
18	Revealing high hydrogen evolution activity in zinc porphyrin sensitized hierarchical porous TiO2 photocatalysts. International Journal of Hydrogen Energy, 2020, 45, 7508-7516.	7.1	36

#	Article	IF	CITATIONS
19	Transfer Hydrogenation of Carbonyl Compounds Catalyzed by Ruthenium Nanoparticles Stabilized on Nanocrystalline Magnesium Oxide by Ionic Liquids. Advanced Synthesis and Catalysis, 2008, 350, 2231-2235.	4.3	33
20	Effect of sacrificial electron donors on hydrogen generation over visible light–irradiated nonmetal-doped TiO2 photocatalysts. Transition Metal Chemistry, 2012, 37, 93-96.	1.4	33
21	Modulated Binary–Ternary Dual Semiconductor Heterostructures. Angewandte Chemie - International Edition, 2016, 55, 2705-2708.	13.8	33
22	A simple carbazole based sensitizer attached to a Nafion-coated-TiO ₂ photocatalyst: the impact of controlling parameters towards visible light driven H ₂ production. New Journal of Chemistry, 2015, 39, 713-720.	2.8	31
23	Photochemical Oxidative Coupling of 2â€Naphthols using a Hybrid Reduced Graphene Oxide/Manganese Dioxide Nanocomposite under Visible‣ight Irradiation. ChemCatChem, 2018, 10, 1844-1852.	3.7	30
24	First Study on Phosphonite-Coordinated Ruthenium Sensitizers for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19635-19642.	8.0	27
25	Photoinduced Fabrication of Cu/TiO ₂ Coreâ€"Shell Heterostructures Derived from Cu-MOF for Solar Hydrogen Generation: The Size of the Cu Nanoparticle Matters. Journal of Physical Chemistry C, 2019, 123, 26073-26081.	3.1	26
26	Hot injection-induced synthesis of ZnCdS–rGO/MoS ₂ heterostructures for efficient hydrogen production and CO ₂ photoreduction. Chemical Communications, 2021, 57, 8660-8663.	4.1	24
27	Tetrathiafulvalene Scaffold-Based Sensitizer on Hierarchical Porous TiO ₂ : Efficient Light-Harvesting Material for Hydrogen Production. Journal of Physical Chemistry C, 2019, 123, 70-81.	3.1	23
28	Unravelling the impact of thiophene auxiliary in new porphyrin sensitizers for high solar energy conversion. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392, 112408.	3.9	22
29	Constructing Cu/BN@PANI ternary heterostructure for efficient photocatalytic hydrogen generation: A combined experimental and DFT studies. International Journal of Hydrogen Energy, 2021, 46, 27394-27408.	7.1	22
30	Noble metal-free integrated UiO-66-PANI-Co ₃ O ₄ catalyst for visible-light-induced H ₂ production. Chemical Communications, 2019, 55, 14494-14497.	4.1	21
31	A combined experimental and theoretical approach revealing a direct mechanism for bifunctional water splitting on doped copper phosphide. Nanoscale, 2020, 12, 17769-17779.	5.6	21
32	Ternary Cu(OH) ₂ /P(g-C ₃ N ₄)/MoS ₂ Nanostructures for Photocatalytic Hydrogen Production. ACS Applied Nano Materials, 2022, 5, 4848-4859.	5.0	20
33	Technoeconomic Investigation of Amine-Grafted Zeolites and Their Kinetics for CO ₂ Capture. ACS Omega, 2021, 6, 6153-6162.	3.5	17
34	Synthesis, crystal structure and optical properties of a naphthylbisimide-Ni complex: a framework on TiO ₂ for visible light H ₂ production. Dalton Transactions, 2014, 43, 15704-15707.	3.3	16
35	A Diuranyl(VI) Complex and Its Application in Electrocatalytic and Photocatalytic Hydrogen Evolution from Neutral Aqueous Medium. Inorganic Chemistry, 2019, 58, 14410-14419.	4.0	16
36	Tailoring hierarchical porous TiO2 based ternary rGO/NiO/TiO2 photocatalyst for efficient hydrogen production and degradation of Rhodamine B. Journal of Molecular Structure, 2021, 1235, 130222.	3.6	15

#	Article	IF	CITATIONS
37	Efficient visible-light-driven hydrogen production by Zn–porphyrin based photocatalyst with engineered active donor–acceptor sites. Materials Advances, 2021, 2, 4762-4771.	5.4	13
38	Controlled photoinduced electron transfer from g-C3N4 to CuCdCe-LDH for efficient visible light hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 40227-40241.	7.1	13
39	Visible light induced $\hat{l}\pm$ -amino acid synthesis from carbon dioxide using nanostructured ZnO/CuO heterojunction photocatalyst. Materialia, 2020, 12, 100777.	2.7	12
40	Efficient charge transfer on the tunable morphology of TiO ₂ /MoS ₂ photocatalyst for an enhanced hydrogen production. New Journal of Chemistry, 2021, 45, 10257-10267.	2.8	12
41	1D alignment of Co(<scp>ii</scp>) metalated porphyrin–napthalimide based self-assembled nanowires for photocatalytic hydrogen evolution. Nanoscale, 2021, 14, 140-146.	5.6	11
42	<i>In situ</i> synthesis of Cuâ€doped ZIFâ€8 for efficient photocatalytic water splitting. Applied Organometallic Chemistry, 2022, 36, .	3 . 5	11
43	Understanding the Structural and Electronic Effect of Zr ⁴⁺ -Doped KNb(Zr)O ₃ Perovskite for Enhanced Photoactivity: A Combined Experimental and Computational Study. Journal of Physical Chemistry C, 2017, 121, 2597-2604.	3.1	9
44	Ruthenium(<scp>iii</scp>)-bis(phenolato)bipyridine/TiO ₂ hybrids: unprecedented photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 10070-10077.	3.3	9
45	Rational design of Ru(II)-phenanthroline complex embedded porous TiO2photocatalyst for efficient hydrogen production. Renewable Energy, 2020, 159, 1-9.	8.9	8
46	Shedding light on hydroxyquinoline-based ruthenium sensitizers with a long-lived charge carrier to boost photocatalytic H ₂ evolution. RSC Advances, 2016, 6, 41165-41172.	3.6	7
47	Cowrie-shell architectures: Low temperature growth of Ni doped CdS film. Journal of Alloys and Compounds, 2015, 649, 553-558.	5. 5	6
48	Highly oriented MoS2@Cdln2S4 nanostructures for efficient solar fuel generation. Nano Structures Nano Objects, 2021, 26, 100682.	3. 5	6
49	Regulating surface structures for efficient electron transfer across h-BN/TiO2/g-C3N4 photocatalyst for remarkably enhanced hydrogen evolution. Journal of Materials Science: Materials in Electronics, 2021, 32, 12191-12207.	2.2	6
50	CdS/CuCo2S4 dots-on-rods boosting charge separation and hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 23632-23643.	7.1	4
51	Kinetics and mechanism for oxidation of [Rulll(edta)(H2O)]â^' with peroxydisulfate in aqueous medium. Journal of Coordination Chemistry, 2010, 63, 2598-2604.	2.2	3
52	Sulfide and selenide electrode for photoelectrochemical water splitting. , 2022, , 525-553.		0