
Galia Maayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340583/publications.pdf Version: 2024-02-01

ΟΛΙΙΑ ΜΑΛΥΛΝ

#	Article	IF	CITATIONS
1	Folded biomimetic oligomers for enantioselective catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13679-13684.	7.1	184
2	A bioinspired soluble manganese cluster as a water oxidationÂelectrocatalyst with low overpotential. Nature Catalysis, 2018, 1, 48-54.	34.4	146
3	Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Topics in Catalysis, 2005, 34, 93-99.	2.8	117
4	Micelle Directed Synthesis of Polyoxometalate Nanoparticles and Their Improved Catalytic Activity for the Aerobic Oxidation of Sulfides. Journal of the American Chemical Society, 2006, 128, 4968-4969.	13.7	85
5	Metallopeptoids. Chemical Communications, 2009, , 56-58.	4.1	79
6	Polyfluorinated Quaternary Ammonium Salts of Polyoxometalate Anions:  Fluorous Biphasic Oxidation Catalysis with and without Fluorous Solvents. Organic Letters, 2003, 5, 3547-3550.	4.6	75
7	â€~Old' Clusters with New Function: Oxidation Catalysis by High Oxidation State Manganese and Cerium/Manganese Clusters Using O ₂ Gas. Inorganic Chemistry, 2011, 50, 7015-7021.	4.0	65
8	A rationally designed metal-binding helical peptoid for selective recognition processes. Chemical Science, 2016, 7, 2809-2820.	7.4	62
9	Palladium Nanoparticles Stabilized by Alkylated Polyethyleneimine as Aqueous Biphasic Catalysts for the Chemoselective Stereocontrolled Hydrogenation of Alkenes. Organic Letters, 2006, 8, 5445-5448.	4.6	60
10	Metallopeptoids as efficient biomimetic catalysts. Chemical Communications, 2015, 51, 11096-11099.	4.1	58
11	Conformational Control in Metallofoldamers: Design, Synthesis and Structural Properties. European Journal of Organic Chemistry, 2009, 2009, 5699-5710.	2.4	53
12	Efficient Homogeneous Electrocatalytic Water Oxidation by a Manganese Cluster with an Overpotential of Only 74â€mV. Angewandte Chemie - International Edition, 2019, 58, 2785-2790.	13.8	52
13	A Copper-Peptoid as a Highly Stable, Efficient, and Reusable Homogeneous Water Oxidation Electrocatalyst. ACS Catalysis, 2018, 8, 10631-10640.	11.2	49
14	A Di-Copper-Peptoid in a Noninnocent Borate Buffer as a Fast Electrocatalyst for Homogeneous Water Oxidation with Low Overpotential. Journal of the American Chemical Society, 2021, 143, 10614-10623.	13.7	48
15	Versatile ruthenium complexes based on 2,2′-bipyridine modified peptoids. Chemical Communications, 2016, 52, 10350-10353.	4.1	39
16	Direct Aerobic Oxidation of Secondary Alcohols Catalysed by Pt(0) Nanoparticles Stabilized by PV2Mo10O40 5â°' Polyoxmetalate. Catalysis Letters, 2008, 123, 41-45.	2.6	36
17	Waterâ€soluble chiral metallopeptoids. Biopolymers, 2015, 104, 577-584.	2.4	35
18	Designed Peptoids as Tunable Modifiers of Zeolite Crystallization. Chemistry of Materials, 2017, 29, 9536-9546.	6.7	34

Galia Maayan

#	Article	IF	CITATIONS
19	Silver nanoparticles assemblies mediated by functionalized biomimetic oligomers. Biopolymers, 2011, 96, 679-687.	2.4	30
20	Heterocyclic amines for the construction of peptoid oligomers bearing multi-dentate ligands. Tetrahedron Letters, 2008, 49, 335-338.	1.4	28
21	A metallopeptoid as an efficient bioinspired cooperative catalyst for the aerobic oxidative synthesis of imines. Journal of Catalysis, 2017, 355, 139-144.	6.2	27
22	A Pure Polyproline Type lâ€like Peptoid Helix by Metal Coordination. Chemistry - A European Journal, 2018, 24, 1159-1167.	3.3	27
23	Folding of unstructured peptoids and formation of hetero-bimetallic peptoid complexes upon side-chain-to-metal coordination. Chemical Science, 2019, 10, 620-632.	7.4	25
24	A Waterâ€Soluble Peptoid Chelator that Can Remove Cu ²⁺ from Amyloidâ€Î² Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angewandte Chemie - International Edition, 2021, 60, 24588-24597.	13.8	25
25	Selfâ€Assembled Cyclic Structures from Copper(II) Peptoids. Angewandte Chemie - International Edition, 2018, 57, 7703-7708.	13.8	24
26	Unique βâ€Turn Peptoid Structures and Their Application as Asymmetric Catalysts. Chemistry - A European Journal, 2020, 26, 9573-9579.	3.3	21
27	A rationally designed peptoid for the selective chelation of Zn ²⁺ over Cu ²⁺ . Chemical Science, 2020, 11, 10127-10134.	7.4	20
28	Nanoparticles assemblies on demand: Controlled aggregation of Ag(0) mediated by modified peptoid sequences. Journal of Colloid and Interface Science, 2017, 508, 56-64.	9.4	17
29	Water soluble hydrophobic peptoids <i>via</i> a minor backbone modification. Organic and Biomolecular Chemistry, 2018, 16, 1480-1488.	2.8	17
30	Efficient Homogeneous Electrocatalytic Water Oxidation by a Manganese Cluster with an Overpotential of Only 74â€mV. Angewandte Chemie, 2019, 131, 2811-2816.	2.0	17
31	Chiral Cu(<scp>ii</scp>), Co(<scp>ii</scp>) and Ni(<scp>ii</scp>) complexes based on 2,2′-bipyridine modified peptoids. Dalton Transactions, 2018, 47, 10767-10774.	3.3	16
32	A Waterâ€Soluble Peptoid that Can Extract Cu ²⁺ from Metallothionein via Selective Recognition. Chemistry - A European Journal, 2021, 27, 1383-1389.	3.3	16
33	Peptoid-based siderophore mimics as dinuclear Fe ³⁺ chelators. Dalton Transactions, 2020, 49, 6020-6029.	3.3	15
34	Click To Bind: Microwave-Assisted Solid-Phase Synthesis of Peptoids Incorporating Pyridine–Triazole Ligands and Their Copper(II) Complexes. Synlett, 2015, 26, 461-466.	1.8	14
35	A unique Co(<scp>iii</scp>)-peptoid as a fast electrocatalyst for homogeneous water oxidation with low overpotential. Chemical Communications, 2021, 57, 939-942.	4.1	13
36	Sequence and Structure of Peptoid Oligomers Can Tune the Photoluminescence of an Embedded Ruthenium Dye. Chemistry - A European Journal, 2019, 25, 9098-9107.	3.3	12

GALIA MAAYAN

#	Article	IF	CITATIONS
37	Stabilization of unique valencies of cobalt, nickel and copper by complexation with the tridentate ligand 2-(2′-pyridyl)-8-hydroxyquinoline. Polyhedron, 2013, 64, 365-370.	2.2	11
38	From Distinct Metallopeptoids to Selfâ€Assembled Supramolecular Architectures. Chemistry - A European Journal, 2021, 27, 634-640.	3.3	11
39	Heteroleptic complexes <i>via</i> solubility control: examples of Cu(<scp>ii</scp>), Co(<scp>ii</scp>), Ni(<scp>ii</scp>) and Mn(<scp>ii</scp>) complexes based on the derivatives of terpyridine and hydroxyquinoline. Dalton Transactions, 2017, 46, 15330-15339.	3.3	10
40	Selfâ€Assembled Cyclic Structures from Copper(II) Peptoids. Angewandte Chemie, 2018, 130, 7829-7834.	2.0	9
41	Aggregation of Ag(0) nanoparticles to unexpected stable chain-like assemblies mediated by 2,2′-bipyridine decorated peptoids. Journal of Colloid and Interface Science, 2019, 533, 598-603.	9.4	9
42	The Role of the â^'OH Groups within Mn ₁₂ Clusters in Electrocatalytic Water Oxidation. Chemistry - A European Journal, 2021, 27, 6034-6043.	3.3	9
43	Sequence-function relationship within water-soluble Peptoid Chelators for Cu2+. Journal of Inorganic Biochemistry, 2021, 217, 111388.	3.5	8
44	Dual Control of Peptide Conformation with Light and Metal Coordination. Chemistry - A European Journal, 2021, 27, 8956-8959.	3.3	8
45	Aggregation of inorganic nanoparticles mediated by biomimetic oligomers. Organic and Biomolecular Chemistry, 2015, 13, 8978-8992.	2.8	7
46	A Resinâ€Bound Peptoid as a Recyclable Heterogeneous Catalyst for Oxidation Reactions. European Journal of Organic Chemistry, 2020, 2020, 3147-3152.	2.4	6
47	Synthesis, characterization, and electrochemical properties of new water-soluble Mn ₁₂ 0 ₁₂ (O ₂ CR) ₁₆ (H ₂ O) ₄ clusters. Journal of Coordination Chemistry, 2018, 71, 1971-1984.	2.2	5
48	Layer by layer assembly of a bio-inspired manganese cluster for electrocatalytic water oxidation. Journal of Catalysis, 2020, 389, 207-211.	6.2	2
49	A Waterâ€Soluble Peptoid Chelator that Can Remove Cu ²⁺ from Amyloidâ€Î² Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angewandte Chemie, 2021, 133, 24793-24802.	2.0	2
50	Frontispiece: From Distinct Metallopeptoids to Selfâ€Assembled Supramolecular Architectures. Chemistry - A European Journal, 2021, 27, .	3.3	0