Sean F Milton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3405738/publications.pdf

Version: 2024-02-01

54 papers 4,065

218677
26
h-index

53 g-index

56 all docs 56
docs citations

56 times ranked 5145 citing authors

#	Article	IF	CITATIONS
1	The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 2011, 4, 723-757.	3.6	765
2	The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model Development, 2017, 10, 1487-1520.	3.6	401
3	The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 2019, 12, 1909-1963.	3.6	372
4	The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. Journal of Advances in Modeling Earth Systems, 2018, 10, 357-380.	3.8	327
5	The Met Office Global Coupled model 2.0 (GC2) configuration. Geoscientific Model Development, 2015, 8, 1509-1524.	3.6	234
6	Unified Modeling and Prediction of Weather and Climate: A 25-Year Journey. Bulletin of the American Meteorological Society, 2012, 93, 1865-1877.	3.3	216
7	Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003?. Journal of Geophysical Research, 2005, 110 , .	3.3	185
8	Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate. Journal of Climate, 2010, 23, 5933-5957.	3.2	156
9	The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geoscientific Model Development, 2014, 7, 361-386.	3.6	154
10	Upgrades to the Boundary-Layer Scheme in the Met Office Numerical Weather Prediction Model. Boundary-Layer Meteorology, 2008, 128, 117-132.	2.3	114
11	Adaptive detrainment in a convective parametrization. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1856-1871.	2.7	82
12	The Impact of Parameterized Subgrid-Scale Orographic Forcing on Systematic Errors in a Global NWP Model. Monthly Weather Review, 1996, 124, 2023-2045.	1.4	80
13	The impact of convective cold pool outflows on model biases in the Sahara. Geophysical Research Letters, 2013, 40, 1647-1652.	4.0	72
14	A case study of the radiative forcing of persistent contrails evolving into contrailâ€induced cirrus. Journal of Geophysical Research, 2009, 114, .	3.3	65
15	Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model. Atmospheric Chemistry and Physics, 2014, 14, 4749-4778.	4.9	65
16	Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1106-1116.	2.7	58
17	The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2â€ES coupled climate model. Geophysical Research Letters, 2016, 43, 395-403.	4.0	54
18	Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies. Atmospheric Chemistry and Physics, 2012, 12, 3419-3435.	4.9	52

#	Article	IF	CITATIONS
19	Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models. Journal of Climate, 2015, 28, 6516-6535.	3.2	47
20	Coupled versus uncoupled hindcast simulations of the Maddenâ€Julian Oscillation in the Year of Tropical Convection. Geophysical Research Letters, 2014, 41, 5670-5677.	4.0	43
21	Evaluation of the Met Office global forecast model using Geostationary Earth Radiation Budget (GERB) data. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1993-2010.	2.7	42
22	Drivers of interannual variability of the <scp>E</scp> ast <scp>A</scp> frican " <scp>L</scp> ong <scp>R</scp> ains― Quarterly Journal of the Royal Meteorological Society, 2018, 144, 861-876.	2.7	35
23	Interaction of convective organization with monsoon precipitation, atmosphere, surface and sea: The 2016 INCOMPASS field campaign in India. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2828-2852.	2.7	35
24	Observations and modelling of the solar and terrestrial radiative effects of Saharan dust: a radiative closure caseâ€study over oceans during the GERBILS campaign. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1211-1226.	2.7	32
25	Fairplay in the verification of operational quantitative precipitation forecasts. Journal of Hydrology, 2004, 288, 225-236.	5.4	31
26	Aerosol optical depths over North Africa: 2. Modeling and model validation. Journal of Geophysical Research, 2008, 113, .	3.3	31
27	Prediction of heavy precipitation in the eastern China flooding events of 2016: Added value of convectionâ€permitting simulations. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3300-3319.	2.7	28
28	Objective tracking of African Easterly Waves in Met Office models. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 47-57.	2.7	25
29	Exploitation of Geostationary Earth Radiation Budget data using simulations from a numerical weather prediction model: Methodology and data validation. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	21
30	The interaction between moist diabatic processes and the atmospheric circulation in African Easterly Wave propagation. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 3207-3227.	2.7	21
31	Modelling suppressed and active convection: Comparisons between three global atmospheric models. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1881-1896.	2.7	18
32	The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,246.	3.3	17
33	How Well Can a Climate Model Simulate an Extreme Precipitation Event: A Case Study Using the Transpose-AMIP Experiment. Journal of Climate, 2018, 31, 6543-6556.	3.2	16
34	Evaluation of Surface Water and Energy Cycles in the Met Office Global NWP Model Using CEOP Data. Journal of the Meteorological Society of Japan, 2007, 85A, 43-72.	1.8	15
35	Examination of longâ€wave radiative bias in general circulation models over North Africa during May–July. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1179-1192.	2.7	15
36	An Evaluation of Modeled Evaporation Regimes in Europe Using Observed Dry Spell Land Surface Temperature. Journal of Hydrometeorology, 2017, 18, 1453-1470.	1.9	15

#	Article	IF	CITATIONS
37	Evaluating Benefits of Two-Way Ocean–Atmosphere Coupling for Global NWP Forecasts. Weather and Forecasting, 2020, 35, 2127-2144.	1.4	15
38	Anatomy of an observed African easterly wave in July 2006. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 923-933.	2.7	13
39	Skill of short- to medium-range monsoon rainfall forecasts from two global models over India for hydro-meteorological applications. Meteorological Applications, 2016, 23, 574-586.	2.1	13
40	Forecasting the monsoon on daily to seasonal timeâ€scales in support of a field campaign. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2906-2927.	2.7	13
41	Comparing Tropical Precipitation Simulated by the Met Office NWP and Climate Models with Satellite Observations. Journal of Applied Meteorology and Climatology, 2014, 53, 200-214.	1.5	12
42	East Asian Summer Atmospheric Moisture Transport and Its Response to Interannual Variability of the West Pacific Subtropical High: An Evaluation of the Met Office Unified Model. Atmosphere, 2019, 10, 457.	2.3	12
43	A Comparison of Two Dust Uplift Schemes within the Same General Circulation Model. Advances in Meteorology, 2012, 2012, 1-13.	1.6	7
44	Unified model rainfall forecasts over India during 2007–2018: Evaluating extreme rains over hilly regions. Journal of Earth System Science, 2021, 130, 1.	1.3	7
45	Australia-Asian monsoon in two versions of the UK Met Office Unified Model and their impacts on tropical–extratropical teleconnections. Climate Dynamics, 2019, 53, 4717-4741.	3.8	6
46	An assessment of UK Meteorological Office numerical weather prediction analyses and forecasts for the Antarctic. Antarctic Science, 1997, 9, 100-109.	0.9	5
47	Representation of the 2016 Korean Heatwave in the Unified Model Global NWP Forecasts: The Impact of Remotely Forced Model Errors and Atmosphere-Ocean Coupling. Atmosphere, 2020, 11, 1275.	2.3	4
48	Experimental Determination of Forecast Sensitivity and the Degradation of Forecasts through the Assimilation of Good Quality Data. Monthly Weather Review, 2012, 140, 2253-2269.	1.4	3
49	A seamless approach to understanding and predicting Arctic sea ice in Met Office modelling systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140161.	3.4	3
50	Assessment of the Teleconnection Patterns Affecting July Precipitation in China and Their Forcing Mechanisms in the Met Office Unified Model. Journal of Climate, 2020, 33, 5727-5742.	3.2	2
51	The U.K.–China Climate Science to Service Partnership. Bulletin of the American Meteorological Society, 2021, 102, E1563-E1578.	3.3	2
52	Using SEEPS with a TRMM-Derived Climatology to Assess Global NWP Precipitation Forecast Skill. Monthly Weather Review, 2022, 150, 135-155.	1.4	2
53	Arctic summer sea-ice seasonal simulation with a coupled model: Evaluation of mean features and biases. Journal of Earth System Science, 2019, 128, 1.	1.3	1
54	Skill of the Extended Range Prediction (ERP) for Indian Summer Monsoon Rainfall with NCMRWF Global Coupled Modelling System. Quarterly Journal of the Royal Meteorological Society, 0, , .	2.7	1