
Andrea Baschieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3405230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant activity of nanomaterials. Journal of Materials Chemistry B, 2018, 6, 2036-2051.	5.8	162
2	Catalytic Asymmetric Conjugate Addition of Nitroalkanes to 4â€Nitroâ€5â€styrylisoxazoles. Angewandte Chemie - International Edition, 2009, 48, 9342-9345.	13.8	137
3	Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chemistry, 2017, 232, 656-663.	8.2	98
4	Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals. Journal of Organic Chemistry, 2015, 80, 10651-10659.	3.2	89
5	Iridium(III) Complexes with Phenyl-tetrazoles as Cyclometalating Ligands. Inorganic Chemistry, 2014, 53, 7709-7721.	4.0	72
6	A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. Journal of Materials Chemistry B, 2016, 4, 2229-2241.	5.8	69
7	Acid Is Key to the Radical-Trapping Antioxidant Activity of Nitroxides. Journal of the American Chemical Society, 2016, 138, 5290-5298.	13.7	61
8	Peroxyl Radical Reactions in Water Solution: A Gym for Protonâ€Coupled Electronâ€Transfer Theories. Chemistry - A European Journal, 2016, 22, 7924-7934.	3.3	59
9	Excited-State Engineering in Heteroleptic Ionic Iridium(III) Complexes. Accounts of Chemical Research, 2021, 54, 1492-1505.	15.6	57
10	Hydrogen Atom Transfer from HOO [.] to <i>ortho</i> â€Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie - International Edition, 2021, 60, 15220-15224.	13.8	57
11	A Mesoionic Carbene as Neutral Ligand for Phosphorescent Cationic Ir(III) Complexes. Inorganic Chemistry, 2016, 55, 7912-7919.	4.0	51
12	Extreme Tuning of Redox and Optical Properties of Cationic Cyclometalated Iridium(III) Isocyanide Complexes. Organometallics, 2013, 32, 460-467.	2.3	49
13	The Antioxidant Activity of Quercetin in Water Solution. Biomimetics, 2017, 2, 9.	3.3	46
14	Photoredox radical conjugate addition of dithiane-2-carboxylate promoted by an iridium(<scp>iii</scp>) phenyl-tetrazole complex: a formal radical methylation of Michael acceptors. Chemical Science, 2017, 8, 1613-1620.	7.4	45
15	Synergic antioxidant activity of $\hat{1}^3$ -terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chemistry, 2021, 345, 128468.	8.2	45
16	Hydroperoxyl Radicals (HOO [.]): Vitaminâ€E Regeneration and Hâ€Bond Effects on the Hydrogen Atom Transfer. Chemistry - A European Journal, 2016, 22, 16441-16445.	3.3	38
17	Anionic Cyclometalated Iridium(III) Complexes with a Bis-Tetrazolate Ancillary Ligand for Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2017, 56, 10584-10595.	4.0	36
18	Click-Derived Triazolylidenes as Chelating Ligands: Achievement of a Neutral and Luminescent Iridium(III)–Triazolide Complex. Inorganic Chemistry, 2018, 57, 11673-11686.	4.0	35

ANDREA BASCHIERI

#	Article	IF	CITATIONS
19	Extremely Fast Hydrogen Atom Transfer between Nitroxides and HOO · Radicals and Implication for Catalytic Coantioxidant Systems. Journal of the American Chemical Society, 2018, 140, 10354-10362.	13.7	34
20	Chain-breaking antioxidant activity of hydroxylated and methoxylated magnolol derivatives: the role of H-bonds. Organic and Biomolecular Chemistry, 2017, 15, 6177-6184.	2.8	32
21	Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH•. A Review. Antioxidants, 2021, 10, 1551.	5.1	30
22	Measuring Antioxidant Activity in Bioorganic Samples by the Differential Oxygen Uptake Apparatus: Recent Advances. Journal of Chemistry, 2017, 2017, 1-12.	1.9	29
23	Organocatalysis and Beyond: Activating Reactions with Two Catalytic Species. Catalysts, 2019, 9, 928.	3.5	26
24	A new tetraarylcyclopentadienone based low molecular weight gelator: synthesis, self-assembly properties and anion recognition. New Journal of Chemistry, 2012, 36, 1469.	2.8	24
25	Introducing a New Family of Biotinylated Ir(III)-Pyridyltriazole Lumophores: Synthesis, Photophysics, and Preliminary Study of Avidin-Binding Properties. Organometallics, 2014, 33, 6154-6164.	2.3	24
26	Enhanced Antioxidant Activity under Biomimetic Settings of Ascorbic Acid Included in Halloysite Nanotubes. Antioxidants, 2019, 8, 30.	5.1	23
27	Hydroxy-substituted trans -cinnamoyl derivatives as multifunctional tools in the context of Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 139, 378-389.	5.5	21
28	Advancements in the recycling of organocatalysts: From classical to alternative approaches. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100387.	5.9	19
29	Carbazole-terpyridine donor–acceptor luminophores. RSC Advances, 2013, 3, 6507.	3.6	18
30	Triple Click to Tripodal Triazole-Based Ligands - Synthesis and Characterization of Blue-Emitting Ce3+Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 2432-2439.	2.0	17
31	1-Methyl-1,4-cyclohexadiene as a Traceless Reducing Agent for the Synthesis of Catechols and Hydroquinones. Journal of Organic Chemistry, 2019, 84, 13655-13664.	3.2	17
32	A chelating diisocyanide ligand for cyclometalated Ir(<scp>iii</scp>) complexes with strong and tunable luminescence. Faraday Discussions, 2015, 185, 233-248.	3.2	16
33	Calibration of Squalene, <i>p</i> -Cymene, and Sunflower Oil as Standard Oxidizable Substrates for Quantitative Antioxidant Testing. Journal of Agricultural and Food Chemistry, 2019, 67, 6902-6910.	5.2	15
34	Hydrogen Transfer Activation via Stabilization of Coordinatively Vacant Sites: Tuning Long-Range Ï€-System Electronic Interaction between Ru(0) and NHC Pendants. Organometallics, 2019, 38, 1041-1051.	2.3	14
35	Iridium(III) Complexes with Fluorinated Phenyl-tetrazoles as Cyclometalating Ligands: Enhanced Excited-State Energy and Blue Emission. Inorganic Chemistry, 2020, 59, 16238-16250.	4.0	12
36	Carbazoleâ€Terpyridine Donorâ€Acceptor Dyads with Rigid Ï€â€Conjugated Bridges. ChemPlusChem, 2019, 84, 1353-1365.	2.8	11

ANDREA BASCHIERI

#	Article	IF	CITATIONS
37	Nanosponges for the protection and release of the natural phenolic antioxidants quercetin, curcumin and phenethyl caffeate. Materials Advances, 2020, 1, 2501-2508.	5.4	11
38	Nitroxides as Building Blocks for Nanoantioxidants. ACS Applied Materials & Interfaces, 2021, 13, 31996-32004.	8.0	11
39	Absolute Antioxidant Activity of Five Phenol-Rich Essential Oils. Molecules, 2021, 26, 5237.	3.8	11
40	New heterometallic Ir(iii)2–Eu(iii) complexes: white light emission from a single molecule. Dalton Transactions, 2015, 44, 37-40.	3.3	10
41	Ditocopheryl Sulfides and Disulfides: Synthesis and Antioxidant Profile. Chemistry - A European Journal, 2019, 25, 9108-9116.	3.3	9
42	Magnetic nanoantioxidants with improved radical-trapping stoichiometry as stabilizers for inhibition of peroxide formation in ethereal solvents. Scientific Reports, 2019, 9, 17219.	3.3	8
43	Luminescent methacrylic copolymers with side-chain cyclometalated iridium(III) complexes. Dyes and Pigments, 2019, 160, 188-197.	3.7	7
44	Cardanol-like co-surfactants solubilized in pegylated micelles keep their antioxidant activity and preserve polyethylene glycol chains from oxidation. Journal of Molecular Liquids, 2019, 293, 111465.	4.9	7
45	Group 14 Metalloles. Properties, Synthesis and Potential Applications: From Organic Electronics to Soft Materials. Mini-Reviews in Organic Chemistry, 2013, 10, 254-267.	1.3	7
46	Hybrid cholesterol-based nanocarriers containing phosphorescent Ir complexes: in vitro imaging on glioblastoma cell line. RSC Advances, 2015, 5, 1091-1096.	3.6	6
47	The Role of Onium Salts in the Proâ€Oxidant Effect of Gold Nanoparticles in Lipophilic Environments. Chemistry - A European Journal, 2018, 24, 9113-9119.	3.3	6
48	From catecholâ€ŧocopherol to catecholâ€hydroquinone polyphenolic antioxidant hybrids. Heteroatom Chemistry, 2018, , e21466.	0.7	6
49	Antioxidant effect of cardanol in mixed nanoformulations with pluronic. Journal of Molecular Liquids, 2020, 316, 113822.	4.9	6
50	Organocatalyzed Michael Addition to Nitroalkenes via Masked Acetaldehyde. Catalysts, 2020, 10, 1296.	3.5	6
51	Asymmetric Organocatalysis Accelerated via Selfâ€Assembled Minimal Structures. European Journal of Organic Chemistry, 2021, 2021, 5403-5406.	2.4	6
52	4-Phenyl-1,2,3-triazoles as Versatile Ligands for Cationic Cyclometalated Iridium(III) Complexes. Inorganic Chemistry, 2022, 61, 8509-8520.	4.0	6
53	The role of sulfur and heavier chalcogens in the chemistry of antioxidants. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 638-642.	1.6	5
54	Proton-Sensitive Free-Radical Dimer Evolution Is a Critical Control Point for the Synthesis of Δ ^{2,2[′]} -Bibenzothiazines. Journal of Organic Chemistry, 2020, 85, 11440-11448.	3.2	5

ANDREA BASCHIERI

#	Article	lF	CITATIONS
55	SET and HAT/PCET acidâ€mediated oxidation processes in helical shaped fused bisâ€phenothiazines. ChemPhysChem, 2021, 22, 1446-1454.	2.1	5
56	Hydrogen Atom Transfer from HOO . to ortho â€Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie, 2021, 133, 15348-15352.	2.0	5
57	Singlet oxygen quenching- and chain-breaking antioxidant-properties of a quercetin dimer able to prevent age-related macular degeneration. Biophysical Chemistry, 2018, 243, 17-23.	2.8	3
58	Phosphorescent iridium-containing nanomicelles: synthesis, characterization and preliminary applications in nanomedical imaging. RSC Advances, 2018, 8, 34162-34167.	3.6	2
59	Interwoven landscape. Procedia Engineering, 2011, 21, 729-736.	1.2	0