Masanori Tachikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Atlas of Blood–Brain Barrier Transporters, Receptors, and Tight Junction Proteins in Rats and Common Marmoset. Journal of Pharmaceutical Sciences, 2013, 102, 3343-3355.	3.3	198
2	Quantitative Targeted Absolute Proteomic Analysis of Transporters, Receptors and Junction Proteins for Validation of Human Cerebral Microvascular Endothelial Cell Line hCMEC/D3 as a Human Blood–Brain Barrier Model. Molecular Pharmaceutics, 2013, 10, 289-296.	4.6	190
3	A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Fluids and Barriers of the CNS, 2013, 10. 21.	5.0	185
4	The Blood–Brain Barrier Creatine Transporter is a Major Pathway for Supplying Creatine to the Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1327-1335.	4.3	161
5	Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCKâ€Mi and CKâ€B suggest a novel neuron–glial relationship for brain energy homeostasis. European Journal of Neuroscience, 2004, 20, 144-160.	2.6	149
6	Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). Journal of Neurochemistry, 2004, 90, 526-536.	3.9	131
7	Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. Journal of Neurochemistry, 2005, 95, 294-304.	3.9	121
8	Brain Insulin Impairs Amyloid-Â(1-40) Clearance from the Brain. Journal of Neuroscience, 2004, 24, 9632-9637.	3.6	90
9	Inner Blood-Retinal Barrier Transporters: Role of Retinal Drug Delivery. Pharmaceutical Research, 2009, 26, 2055-2065.	3.5	89
10	Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS ONE, 2018, 13, e0193799.	2.5	87
11	Quantitative targeted absolute proteomics of rat blood–cerebrospinal fluid barrier transporters: comparison with a human specimen. Journal of Neurochemistry, 2015, 134, 1104-1115.	3.9	86
12	Roles of organic anion/cation transporters at the blood–brain and blood–cerebrospinal fluid barriers involving uremic toxins. Clinical and Experimental Nephrology, 2011, 15, 478-485.	1.6	72
13	Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids and Barriers of the CNS, 2011, 8, 13.	5.0	71
14	ATP-Binding Cassette Transporter G2 Mediates the Efflux of Phototoxins on the Luminal Membrane of Retinal Capillary Endothelial Cells. Pharmaceutical Research, 2006, 23, 1235-1242.	3.5	69
15	Function of taurine transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary endothelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2138-2142.	2.6	69
16	Quantitative Atlas of Cytochrome P450, UDP-Glucuronosyltransferase, and Transporter Proteins in Jejunum of Morbidly Obese Subjects. Molecular Pharmaceutics, 2016, 13, 2631-2640.	4.6	69
17	Bloodâ€ŧoâ€ŧetina transport of creatine via creatine transporter (CRT) at the rat inner blood–retinal barrier. Journal of Neurochemistry, 2004, 89, 1454-1461.	3.9	60
18	Lipophilicity and Transporter Influence on Blood-Retinal Barrier Permeability: A Comparison with Blood-Brain Barrier Permeability. Pharmaceutical Research. 2010, 27, 2715-2724.	3.5	59

Masanori Tachikawa

#	Article	IF	CITATIONS
19	The Inner Blood-Retinal Barrier. Advances in Experimental Medicine and Biology, 2013, , 85-104.	1.6	55
20	Involvement of OCTN2 in the Transport of Acetyl- <scp>l</scp> -Carnitine across the Inner Blood–Retinal Barrier. , 2010, 51, 430.		51
21	Cluster of Differentiation 46 Is the Major Receptor in Human Blood–Brain Barrier Endothelial Cells for Uptake of Exosomes Derived from Brain-Metastatic Melanoma Cells (SK-Mel-28). Molecular Pharmaceutics, 2019, 16, 292-304.	4.6	50
22	Expression and possible role of creatine transporter in the brain and at the bloodâ€cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant. Journal of Neurochemistry, 2008, 107, 768-778.	3.9	49
23	LC–MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line. Molecular Pharmaceutics, 2017, 14, 605-613.	4.6	45
24	The blood–brain barrier transport and cerebral distribution of guanidinoacetate in rats: involvement of creatine and taurine transporters. Journal of Neurochemistry, 2009, 111, 499-509.	3.9	44
25	Evidence for creatine biosynthesis in Müller glia. Glia, 2005, 52, 47-52.	4.9	43
26	Cationic amino acid transporter 1â€mediated <scp>l</scp> â€arginine transport at the inner blood–retinal barrier. Journal of Neurochemistry, 2009, 111, 716-725.	3.9	42
27	Gene expression profiles of ATP-binding cassette transporter A and C subfamilies in mouse retinal vascular endothelial cells. Microvascular Research, 2008, 75, 68-72.	2.5	39
28	Contribution of Pannexin 1 and Connexin 43 Hemichannels to Extracellular Calcium–Dependent Transport Dynamics in Human Blood-Brain Barrier Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 192-200.	2.5	39
29	Role of the blood–cerebrospinal fluid barrier transporter as a cerebral clearance system for prostaglandin E ₂ produced in the brain. Journal of Neurochemistry, 2012, 123, 750-760.	3.9	38
30	Blood-to-retina transport of biotin via Na+-dependent multivitamin transporter (SMVT) at the inner blood-retinal barrier. Experimental Eye Research, 2010, 91, 387-392.	2.6	37
31	Abundant Expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1, and xCT Transporters in Blood-Arachnoid Barrier of Pig and Polarized Localizations at CSF- and Blood-Facing Plasma Membranes. Drug Metabolism and Disposition, 2020, 48, 135-145.	3.3	36
32	A Novel Relationship Between Creatine Transport at the Blood-Brain and Blood-Retinal Barriers, Creatine Biosynthesis, And its Use for Brain and Retinal Energy Homeostasis. , 2007, 46, 83-98.		35
33	The bloodâ€cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporterâ€mediated process. Journal of Neurochemistry, 2008, 107, 432-442.	3.9	33
34	Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids and Barriers of the CNS, 2013, 10, 29.	5.0	32
35	High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human. Molecular Pharmaceutics, 2018, 15, 127-140.	4.6	32
36	Quantitative Targeted Absolute Proteomics-Based Large-Scale Quantification of Proline-Hydroxylated α-Fibrinogen in Plasma for Pancreatic Cancer Diagnosis. Journal of Proteome Research, 2013, 12, 753-762.	3.7	31

#	Article	IF	CITATIONS
37	A Clearance System for Prostaglandin D ₂ , a Sleep-Promoting Factor, in Cerebrospinal Fluid: Role of the Blood-Cerebrospinal Barrier Transporters. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 608-616.	2.5	30
38	Drug Clearance from Cerebrospinal Fluid Mediated by Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8) at Arachnoid Membrane of Rats. Molecular Pharmaceutics, 2018, 15, 911-922.	4.6	29
39	Î ³ -Aminobutyric Acid Transporter 2 Mediates the Hepatic Uptake of Guanidinoacetate, the Creatine Biosynthetic Precursor, in Rats. PLoS ONE, 2012, 7, e32557.	2.5	29
40	Functional involvement of scavenger receptor class B, type I, in the uptake of alpha-tocopherol using cultured rat retinal capillary endothelial cells. Molecular Vision, 2007, 13, 2041-7.	1.1	28
41	Inner Blood–Retinal Barrier Dominantly Expresses Breast Cancer Resistance Protein: Comparative Quantitative Targeted Absolute Proteomics Study of CNS Barriers in Pig. Molecular Pharmaceutics, 2017, 14, 3729-3738.	4.6	26
42	Characteristics of glycine transport across the inner blood–retinal barrier. Neurochemistry International, 2009, 55, 789-795.	3.8	23
43	ATP-Binding Cassette Transporter A Subfamily 8 Is a Sinusoidal Efflux Transporter for Cholesterol and Taurocholate in Mouse and Human Liver. Molecular Pharmaceutics, 2018, 15, 343-355.	4.6	23
44	Altered Expression of Small Intestinal Drug Transporters and Hepatic Metabolic Enzymes in a Mouse Model of Familial Alzheimer's Disease. Molecular Pharmaceutics, 2018, 15, 4073-4083.	4.6	23
45	Oral Morphine Pharmacokinetic in Obesity: The Role of P-Glycoprotein, MRP2, MRP3, UGT2B7, and CYP3A4 Jejunal Contents and Obesity-Associated Biomarkers. Molecular Pharmaceutics, 2016, 13, 766-773.	4.6	22
46	Liver Zonation Index of Drug Transporter and Metabolizing Enzyme Protein Expressions in Mouse Liver Acinus. Drug Metabolism and Disposition, 2018, 46, 610-618.	3.3	22
47	Transport systems of serine at the brain barriers and in brain parenchymal cells. Journal of Neurochemistry, 2011, 118, 304-313.	3.9	20
48	Developmental changes in transporter and receptor protein expression levels at the rat blood-brain barrier based on quantitative targeted absolute proteomics. Drug Metabolism and Pharmacokinetics, 2020, 35, 117-123.	2.2	20
49	Developmental changes of l -arginine transport at the blood-brain barrier in rats. Microvascular Research, 2018, 117, 16-21.	2.5	19
50	Organic Anion-Transporting Polypeptide 1a4 (Oatp1a4/Slco1a4) at the Blood–Arachnoid Barrier is the Major Pathway of Sulforhodamine-101 Clearance from Cerebrospinal Fluid of Rats. Molecular Pharmaceutics, 2019, 16, 2021-2027.	4.6	18
51	Correlation of Organic Cation/Carnitine Transporter 1 and Multidrug Resistance-Associated Protein 1 Transport Activities With Protein Expression Levels in Primary Cultured Human Tracheal, Bronchial, and Alveolar Epithelial Cells. Journal of Pharmaceutical Sciences, 2016, 105, 876-883.	3.3	17
52	Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine. Molecular Pharmaceutics, 2016, 13, 2443-2456.	4.6	17
53	Expression and function of connexin 43 protein in mouse and human retinal pigment epithelial cells as hemichannels and gap junction proteins. Experimental Eye Research, 2018, 168, 128-137.	2.6	17
54	Retinal transfer of nicotinate by H+-monocarboxylate transporter at the inner blood-retinal barrier. Microvascular Research, 2011, 82, 385-390.	2.5	16

Masanori Tachikawa

#	Article	IF	CITATIONS
55	Involvement of Î ³ -aminobutyric acid transporter 2 in the hepatic uptake of taurine in rats. American Journal of Physiology - Renal Physiology, 2012, 303, G291-G297.	3.4	16
56	All-trans retinoic acid enhances gemcitabine cytotoxicity in human pancreatic cancer cell line AsPC-1 by up-regulating protein expression of deoxycytidine kinase. European Journal of Pharmaceutical Sciences, 2017, 103, 116-121.	4.0	13
57	Increased Expression of Renal Drug Transporters in a Mouse Model of Familial Alzheimer's Disease. Journal of Pharmaceutical Sciences, 2019, 108, 2484-2489.	3.3	13
58	Polarized hemichannel opening of pannexin 1/connexin 43 contributes to dysregulation of transport function in blood-brain barrier endothelial cells. Neurochemistry International, 2020, 132, 104600.	3.8	13
59	Glycine and l-arginine transport in cultured Müller glial cells (TR-MUL). Neurochemistry International, 2010, 57, 262-268.	3.8	11
60	Inner Blood–Retinal Barrier Mediates L-Isomer-Predominant Transport of Serine. Journal of Pharmaceutical Sciences, 2011, 100, 3892-3903.	3.3	11
61	Amino Acid Residues Involved in the Substrate Specificity of TauT/SLC6A6 for Taurine and γ-Aminobutyric Acid. Biological and Pharmaceutical Bulletin, 2014, 37, 817-825.	1.4	10
62	Global and Targeted Proteomics of Prostate Cancer Cell Secretome: Combination of 2-Dimensional Image-Converted Analysis of Liquid Chromatography and Mass Spectrometry and In Silico Selection Selected Reaction Monitoring Analysis. Journal of Pharmaceutical Sciences, 2016, 105, 3440-3452.	3.3	10
63	Monocarboxylate transporter 12 as a guanidinoacetate efflux transporter in renal proximal tubular epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183434.	2.6	10
64	Astrocytic Î ³ -aminobutyric acid (GABA) transporters mediate guanidinoacetate transport in rat brain. Neurochemistry International, 2018, 113, 1-7.	3.8	9
65	Selective Protein Expression Changes of Leukocyte-Migration-Associated Cluster of Differentiation Antigens at the Blood–Brain Barrier in a Lipopolysaccharide-Induced Systemic Inflammation Mouse Model without Alteration of Transporters, Receptors or Tight Junction-Related Protein. Biological and Pharmaceutical Bulletin, 2019, 42, 944-953.	1.4	9
66	Contribution of monocarboxylate transporter 12 to blood supply of creatine on the sinusoidal membrane of the hepatocytes. American Journal of Physiology - Renal Physiology, 2021, 321, G113-G122.	3.4	8
67	SLC6A and SLC16A family of transporters: Contribution to transport of creatine and creatine precursors in creatine biosynthesis and distribution. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183840.	2.6	8
68	Lysophospholipids enhance taurine release from rat retinal vascular endothelial cells under hypoosmotic stress. Microvascular Research, 2009, 78, 332-337.	2.5	7
69	Application of Quantitative Targeted Absolute Proteomics to Profile Protein Expression Changes of Hepatic Transporters and Metabolizing Enzymes During Cholic Acid-Promoted Liver Regeneration. Journal of Pharmaceutical Sciences, 2017, 106, 2499-2508.	3.3	7
70	Cell-Type-Specific Spatiotemporal Expression of Creatine Biosynthetic Enzyme S-adenosylmethionine:guanidinoacetate N-methyltransferase in Developing Mouse Brain. Neurochemical Research, 2018, 43, 500-510.	3.3	7
71	Gene expression of A6-like subgroup of ATP-binding cassette transporters in mouse brain parenchyma and microvessels. Anatomical Science International, 2018, 93, 456-463.	1.0	6
72	Organic anion-transporting polypeptide 1a4–mediated heterogeneous distribution of sulforhodamine-101 in rat hepatic lobules. Drug Metabolism and Pharmacokinetics, 2019, 34, 239-246.	2.2	6

#	Article	IF	CITATIONS
73	Continuous release of O2â^'/ONOOâ^'in plasmaâ€exposed HEPESâ€buffered saline promotes TRP channelâ€mediated uptake of a large cation. Plasma Processes and Polymers, 2020, 17, 1900257.	3.0	6
74	Targeted Proteomics-Based Quantitative Protein Atlas of Pannexin and Connexin Subtypes in Mouse and Human Tissues and Cancer Cell Lines. Journal of Pharmaceutical Sciences, 2020, 109, 1161-1168.	3.3	5
75	Assembly of Taurine Transporter (Slc6a6) with Na ⁺ –H ⁺ Exchanger Regulatory Factor 1 (Slc9a3r1) Improves GABA Transport Activity by Increasing the Maximum Transport Velocity. Biological and Pharmaceutical Bulletin, 2018, 41, 338-341.	1.4	3
76	Identification of Blood–Brain Barrier-Permeable Proteins Derived from a Peripheral Organ: In Vivo and in Vitro Evidence of Blood-to-Brain Transport of Creatine Kinase. Molecular Pharmaceutics, 2019, 16, 247-257.	4.6	3
77	Determination of Intrinsic Creatine Transporter (Slc6a8) Activity and Creatine Transport Function of Leukocytes in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 474-479.	1.4	3
78	Transport Characteristics of Placenta-Derived Extracellular Vesicles and Their Relevance to Placenta-to-Maternal Tissue Communication. Chemical and Pharmaceutical Bulletin, 2022, 70, 324-329.	1.3	2
79	Blood-Arachnoid Barrier as a Dynamic Physiological and Pharmacological Interface Between Cerebrospinal Fluid and Blood. AAPS Advances in the Pharmaceutical Sciences Series, 2022, , 93-121.	0.6	2
80	Distinct Transport Properties of Human Pannexin 1 and Connexin 32 Hemichannels. Journal of Pharmaceutical Sciences, 2020, 109, 1395-1402.	3.3	1
81	Processing mechanism of guanidinoacetate in choroid plexus epithelial cells: conversion of guanidinoacetate to creatine via guanidinoacetate N-methyltransferase and monocarboxylate transporter 12-mediated creatine release into the CSE. Fluids and Barriers of the CNS, 2022, 19	5.0	1