Li Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3404876/publications.pdf

Version: 2024-02-01

81743 74018 5,731 75 79 39 citations h-index g-index papers 80 80 80 7888 docs citations citing authors times ranked all docs

#	Article	IF	CITATIONS
1	High-performance flexible supercapacitor enabled by Polypyrrole-coated NiCoP@CNT electrode for wearable devices. Journal of Colloid and Interface Science, 2022, 606, 135-147.	5.0	48
2	Dispersive NiCoP/LDO heterostructure nanosheets scattered by CNTs enabling high-performance electrochemical energy storage. Chemical Engineering Journal, 2022, 429, 132482.	6.6	33
3	Synergistic effects of B/S co-doped spongy-like hierarchically porous carbon for a high performance zinc-ion hybrid capacitor. Nanoscale, 2022, 14, 2004-2012.	2.8	21
4	Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chemistry, 2022, 24, 3864-3894.	4.6	97
5	Hollow Bimetallic Phosphosulfide NiCo–P/S Nanoparticles in a CNT/rGO Framework with Interface Charge Redistribution for Battery-Type Supercapacitors. ACS Applied Energy Materials, 2022, 5, 685-696.	2.5	17
6	Study on lithium storage performance of plum-putting-like CoP nanoparticles embedded in N, P co-doped porous carbon. Journal of Colloid and Interface Science, 2022, 624, 14-23.	5.0	7
7	Metal Phosphides as Promising Electrode Materials for Alkali Metal Ion Batteries and Supercapacitors: A Review. Advanced Sustainable Systems, 2022, 6, .	2.7	6
8	RGO-loaded double phase Mo-doped NiS for enhanced battery-type energy storage in hybrid supercapacitors. Electrochimica Acta, 2022, 426, 140810.	2.6	8
9	Application of NiCoP/NiCo2N designed by heterogeneous interface engineering in low-temperature flexible supercapacitors. Journal of Energy Storage, 2022, 54, 105302.	3.9	6
10	Reduced graphene oxide-modified NiCo-phosphates on Ni foam enabling high areal capacitances for asymmetric supercapacitors. Journal of Materials Science and Technology, 2021, 90, 255-263.	5.6	20
11	SnS2 nanodots decorated on RGO sheets with enhanced pseudocapacitive performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 853, 156903.	2.8	34
12	A hollow Co ₉ S ₈ rodâ€"acidified CNTâ€"NiCoLDH composite providing excellent electrochemical performance in asymmetric supercapacitors. Dalton Transactions, 2021, 50, 9283-9292.	1.6	19
13	Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. Journal of Materials Chemistry A, 2021, 9, 16565-16574.	5.2	67
14	Zincâ€ion Hybrid Capacitor with High Energy Density Constructed by Bamboo Shavings Derived Spongyâ€ike Porous Carbon. ChemistrySelect, 2021, 6, 6937-6943.	0.7	12
15	Mixed-metal MOF-derived Co–Mn–O hollow spheres as anodes for lithium storage. Materials Today Energy, 2021, 21, 100825.	2.5	3
16	RGO wrapped tungsten trioxide hydrate on CNT-modified carbon Cloth as self-supported high-rate lithium-ion battery electrode. Electrochimica Acta, 2021, 394, 139162.	2.6	14
17	Effect of physiochemical properties in biomass-derived materials caused by different synthesis methods and their electrochemical properties in supercapacitors. Journal of Materials Chemistry A, 2021, 9, 12521-12552.	5.2	43
18	Hollow CoP spheres assembled from porous nanosheets as high-rate and ultra-stable electrodes for advanced supercapacitors. Journal of Materials Chemistry A, 2021, 9, 26226-26235.	5.2	31

#	Article	IF	CITATIONS
19	Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications. Electrochemical Energy Reviews, 2020, 3, 395-430.	13.1	59
20	MnO nanorods coated by Co-decorated N-doped carbon as anodes for high performance lithium ion batteries. Applied Surface Science, 2020, 504, 144479.	3.1	34
21	Enhanced pseudocapacitive energy storage properties of budding-branch like MoO ₂ @C/CNT nanorods. Dalton Transactions, 2020, 49, 1637-1645.	1.6	14
22	MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors. Chemical Engineering Journal, 2020, 385, 123454.	6.6	155
23	Mesoporous ZnCo2O4-CNT microflowers as bifunctional material for supercapacitive and lithium energy storage. Applied Surface Science, 2020, 506, 144964.	3.1	43
24	Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage. Composites Part B: Engineering, 2020, 182, 107611.	5.9	80
25	Photocatalysisâ€Assisted Co ₃ O ₄ /gâ€C ₃ N ₄ p–n Junction Allâ€Solidâ€State Supercapacitors: A Bridge between Energy Storage and Photocatalysis. Advanced Science, 2020, 7, 2001939.	5.6	83
26	Sn-Decorated red P entangled in CNTs as anodes for advanced lithium ion batteries. Dalton Transactions, 2020, 49, 10909-10917.	1.6	8
27	CTAB-modified Ni2P@ACNT composite with enhanced supercapacitive and lithium/sodium storage performance. Journal of Electroanalytical Chemistry, 2020, 873, 114441.	1.9	16
28	Construction of Sn–P–graphene microstructure with Sn–C and P–C co-bonding as anodes for lithium-ion batteries. Chemical Communications, 2020, 56, 10572-10575.	2.2	13
29	CuCo ₂ S ₄ â€"rGO Microflowers: Firstâ€Principle Calculation and Application in Energy Storage. Small, 2020, 16, e2001468.	5.2	39
30	Porous Mo–C coverage on ZnO rods for enhanced supercapacitive performance. Dalton Transactions, 2020, 49, 5134-5142.	1.6	6
31	Carbon-coated MoO ₂ nanoclusters anchored on RGO sheets as high-performance electrodes for symmetric supercapacitors. Dalton Transactions, 2019, 48, 285-295.	1.6	28
32	Sn-SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries. Journal of Power Sources, 2019, 415, 126-135.	4.0	84
33	Bimetallic NiCo2S4 Nanoneedles Anchored on Mesocarbon Microbeads as Advanced Electrodes for Asymmetric Supercapacitors. Nano-Micro Letters, 2019, 11, 35.	14.4	83
34	Porous NiCoP nanowalls as promising electrode with high-area and mass capacitance for supercapacitors. Science China Materials, 2019, 62, 1115-1126.	3 . 5	42
35	N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior. Nano Research, 2019, 12, 607-618.	5.8	83
36	TiO2-modified red phosphorus nanosheets entangled in carbon nanotubes for high performance lithium ion batteries. Electrochimica Acta, 2019, 297, 319-327.	2.6	26

#	Article	IF	Citations
37	CO2 oxidation of carbon nanotubes for lithium-sulfur batteries with improved electrochemical performance. Carbon, 2018, 132, 370-379.	5.4	48
38	Three-dimensional macroporous graphene monoliths with entrapped MoS ₂ nanoflakes from single-step synthesis for high-performance sodium-ion batteries. RSC Advances, 2018, 8, 2477-2484.	1.7	13
39	High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel. Nano Research, 2018, 11, 1651-1663.	5.8	58
40	One-pot synthesis of Ni(OH)2 flakes embeded in highly-conductive carbon nanotube/graphene hybrid framework as high performance electrodes for supercapacitors. Materials Letters, 2018, 213, 131-134.	1.3	13
41	Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Research, 2018, 11, 2733-2745.	5.8	46
42	Jahn-Teller distortions in molybdenum oxides: An achievement in exploring high rate supercapacitor applications and robust photocatalytic potential. Nano Energy, 2018, 53, 982-992.	8.2	57
43	MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage. Carbon, 2018, 139, 145-155.	5.4	77
44	Reduced graphene oxide nanosheet modified NiMn-LDH nanoflake arrays for high-performance supercapacitors. Chemical Communications, 2018, 54, 10172-10175.	2.2	46
45	A study on the effect of cross-linkers on pervaporation performance of room temperature vulcanised silicone rubber membranes for butanol recovery. Plastics, Rubber and Composites, 2017, 46, 277-284.	0.9	5
46	Coordination and reduction in polyol-mediated solvothermal synthesis of nickel-based materials with controllable morphology and magnetic and electrochemical properties. Research on Chemical Intermediates, 2017, 43, 6395-6406.	1.3	5
47	Mn3O4 nanoparticles embedded in 3D reduced graphene oxide network as anode for high-performance lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 14919-14927.	1.1	9
48	Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale, 2017, 9, 18552-18560.	2.8	41
49	Urchin-like NiCo ₂ O ₄ nanoneedles grown on mesocarbon microbeads with synergistic electrochemical properties as electrodes for symmetric supercapacitors. Dalton Transactions, 2017, 46, 9457-9465.	1.6	30
50	Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries. Nanotechnology, 2016, 27, 075401.	1.3	20
51	Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2016, 10, 1300-1308.	7.3	196
52	Mesoporous Li ₄ Ti ₅ O ₁₂ nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. Nanoscale, 2016, 8, 617-625.	2.8	46
53	Binder-free polymer encapsulated sulfur–carbon nanotube composite cathodes for high performance lithium batteries. Carbon, 2016, 96, 1053-1059.	5.4	64
54	Graphene/Sulfur Hybrid Nanosheets from a Spaceâ€Confined "Sauna―Reaction for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 5936-5942.	11.1	124

#	Article	IF	CITATIONS
55	Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 5305-5312.	5.2	112
56	Electrospun Bismuth Ferrite Nanofibers for Potential Applications in Ferroelectric Photovoltaic Devices. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3665-3670.	4.0	55
57	Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale, 2015, 7, 10178-10185.	2.8	55
58	Nitrogenâ€Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chemistry - A European Journal, 2014, 20, 564-574.	1.7	388
59	Small-sized and high-dispersed WN from [SiO ₄] ^{4â^'} clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation. Energy and Environmental Science, 2014, 7, 1939-1949.	15.6	130
60	Stable 4 V-class bicontinuous cathodes by hierarchically porous carbon coating on Li ₃ V ₂ (PO ₄) ₃ nanospheres. Nanoscale, 2014, 6, 12426-12433.	2.8	20
61	Isolated Boron and Nitrogen Sites on Porous Graphitic Carbon Synthesized from Nitrogenâ€Containing Chitosan for Supercapacitors. ChemSusChem, 2014, 7, 1637-1646.	3.6	128
62	Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries. Journal of Power Sources, 2014, 248, 265-272.	4.0	61
63	Sulfur Nanocrystals Confined in Carbon Nanotube Network As a Binder-Free Electrode for High-Performance Lithium Sulfur Batteries. Nano Letters, 2014, 14, 4044-4049.	4.5	262
64	Highly entangled carbon nanoflakes on Li ₃ V ₂ (PO ₄) ₃ microrods for improved lithium storage performance. RSC Advances, 2013, 3, 1297-1301.	1.7	32
65	Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors. ChemSusChem, 2013, 6, 880-889.	3.6	257
66	From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. Journal of Materials Chemistry A, 2013, 1 , 6462.	5.2	794
67	Highly dispersed Ni-decorated porous hollow carbon nanofibers: fabrication, characterization, and NOx gas sensors at room temperature. Journal of Materials Chemistry, 2012, 22, 24814.	6.7	35
68	A novel soft template strategy to fabricate mesoporous carbon/graphene composites as high-performance supercapacitor electrodes. RSC Advances, 2012, 2, 8359.	1.7	82
69	A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. Journal of Materials Chemistry, 2012, 22, 11778.	6.7	159
70	Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2012, 2, 4498.	1.7	696
71	Magnetically separable porous graphitic carbon with large surface area as excellent adsorbents for metal ions and dye. Journal of Materials Chemistry, 2011, 21, 7232.	6.7	85
72	Grain size modulation on BaTiO3 nanoparticles synthesized at room temperature. Journal of Solid State Chemistry, 2011, 184, 2690-2694.	1.4	10

#	Article	IF	CITATIONS
73	Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature. Nanoscale Research Letters, 2011, 6, 466.	3.1	48
74	Low-temperature synthesis and analysis of barium titanate nanoparticles with excess barium. Advanced Powder Technology, 2011, 22, 401-404.	2.0	5
75	Stoichiometry of BaTiO3 nanoparticles. Journal of Nanoparticle Research, 2010, 12, 2605-2609.	0.8	6
76	Excess titanium in barium titanate nanoparticles directly synthesized from solution. Journal of Physics and Chemistry of Solids, 2010, 71, 1676-1679.	1.9	1
77	Slurry Synthesis of Bismuth Sodium Titanate with a Transient Aurivilliusâ€Type Structure. Journal of the American Ceramic Society, 2010, 93, 1044-1048.	1.9	7
78	Synthesis and characterization of Bi1/2Na1/2TiO3 nanopowders by pyrogenation-with-sugar-protection method. Materials Chemistry and Physics, 2009, 113 , $329-333$.	2.0	5
79	Rhenium-osmium isotope constraints on the age and source of the platinum mineralization in the Lower Cambrian black rock series of Hunan-Guizhou provinces, China. Science in China Series D: Earth Sciences, 2003, 46, 919-927.	0.9	17