List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3404541/publications.pdf Version: 2024-02-01

		393982	360668
87	1,561	19	35
papers	citations	h-index	g-index
0.0	22	0.0	1050
93	93	93	1252
all docs	docs citations	times ranked	citing authors

SVDAMECH

#	Article	IF	CITATIONS
1	Recent Applications of Vibrational Spectroscopic Techniques in the Grain Industry. Food Reviews International, 2023, 39, 209-239.	4.3	12
2	Review of Cocos nucifera L. testa-derived phytonutrients with special reference to phenolics and its potential for encapsulation. Journal of Food Science and Technology, 2023, 60, 1-10.	1.4	3
3	Rapid detection of adulteration in desiccated coconut powder: vis-NIR spectroscopy and chemometric approach. Food Control, 2022, 133, 108588.	2.8	31
4	Advanced process analytical tools for identification of adulterants in edible oils – A review. Food Chemistry, 2022, 369, 130898.	4.2	35
5	Conservation and Utilization of Genetic Diversity in Coconut (Cocos nucifera L.). , 2022, , 197-250.		0
6	Central composite design, Pareto analysis, and artificial neural network for modeling of microwave processing parameters for tender coconut water. Measurement Food, 2022, 5, 100015.	0.8	11
7	Thermal treatments reduce rancidity and modulate structural and digestive properties of starch in pearl millet flour. International Journal of Biological Macromolecules, 2022, 195, 207-216.	3.6	18
8	Virgin Coconut Oil (VCO) Ameliorates High Fat Diet (HFD)-Induced Obesity, Dyslipidemia and Bestows Cardiovascular Protection in Rats. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2022, 92, 249-259.	0.4	1
9	Coconut Sugar- a Potential Storehouse of Nutritive Metabolites, Novel Bio-products and Prospects. Sugar Tech, 2022, 24, 841-856.	0.9	8
10	Characterization of root-endophytic actinobacteria from cactus (Opuntia ficus-indica) for plant growth promoting traits. Archives of Microbiology, 2022, 204, 150.	1.0	7
11	Textural Properties of Coconut Meat: Implication on the Design of Fiber Extraction and Coconut Processing Equipment. Journal of Natural Fibers, 2022, 19, 11092-11104.	1.7	2
12	Sensorial, textural and nutritional attributes of coconut sugar and cocoa solids based â€~bean to bar' dark chocolate. Journal of Texture Studies, 2022, , .	1.1	2
13	Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut (Cocos nucifera L.). Molecules, 2022, 27, 3250.	1.7	11
14	Season and genotype effect on whole plant water use efficiency of coconut (Cocos nucifera L.) seedlings grown in a hydroponic system. Scientia Horticulturae, 2022, 303, 111198.	1.7	1
15	Quantitative Trait Loci (QTL) and Association Mapping for Major Agronomic Traits. Compendium of Plant Genomes, 2021, , 91-101.	0.3	2
16	Endosperm Oil Biosynthesis: A Case Study for Trait Related Gene Evolution in Coconut. Compendium of Plant Genomes, 2021, , 145-157.	0.3	0
17	Coconut: The Tree of Life-Endless Possibilities. Compendium of Plant Genomes, 2021, , 205-207.	0.3	0
18	Mitochondrial and Chloroplast Genomes. Compendium of Plant Genomes, 2021, , 133-143.	0.3	1

#	Article	IF	CITATIONS
19	Reaction kinetics of physico-chemical attributes in coconut inflorescence sap during fermentation. Journal of Food Science and Technology, 2021, 58, 3589-3597.	1.4	12
20	Effect of sea water substitution on growth, physiological and biochemical processes of coconut (Cocos nucifera L.) seedlings—A hydroponic study. Scientia Horticulturae, 2021, 280, 109935.	1.7	3
21	Emerging non-thermal technologies for decontamination of Salmonella in food. Trends in Food Science and Technology, 2021, 112, 400-418.	7.8	64
22	Antiviral Potential of Coconut (Cocos nucifera L.) Oil and COVID-19. Coronaviruses, 2021, 2, 405-410.	0.2	6
23	An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chemistry, 2021, 348, 129088.	4.2	70
24	Dietary prospects of coconut oil for the prevention and treatment of Alzheimer's disease (AD): A review of recent evidences. Trends in Food Science and Technology, 2021, 112, 201-211.	7.8	34
25	Viruses Without Borders: Global Analysis of the Population Structure, Haplotype Distribution, and Evolutionary Pattern of Iris Yellow Spot Orthotospovirus (Family Tospoviridae, Genus) Tj ETQq1 1 0.784314 rgB	T /Qværloc	k 10 Tf 50 49
26	Emerging non-thermal processing techniques for preservation of tender coconut water. LWT - Food Science and Technology, 2021, 149, 111850.	2.5	19
27	Genome Sequencing, Transcriptomics, Proteomics and Metabolomics. Compendium of Plant Genomes, 2021, , 119-132.	0.3	2
28	Aroma and Fragrance: A Case Study for Trait-Related Gene Evolution in Coconut. Compendium of Plant Genomes, 2021, , 159-164.	0.3	0
29	Transcriptome Analysis of Cocos nucifera L. Seedlings Having Contrasting Water-Use Efficiency (WUE) under Water-Deficit Stress: Molecular Insights and Genetic Markers for Drought Tolerance. Biology and Life Sciences Forum, 2021, 4, 73.	0.6	5
30	Terahertz Spectroscopy Imaging Technique: Non-Destructive Tool For Evaluation Of Quality And Safety Of Food Products. , 2021, , 141-157.		0
31	Data of 16S rRNA gene amplicon-based metagenomic signatures of arecanut rhizosphere soils in Yellow Leaf Disease (YLD) endemic region of India. Data in Brief, 2021, 38, 107443.	0.5	2
32	Genome-wide exploration of auxin response factors (ARFs) and their expression dynamics in response to abiotic stresses and growth regulators in coconut (Cocos nucifera L.). Plant Gene, 2021, 28, 100344.	1.4	9
33	Rhythm of a life within life: role of viral suppressors in hijacking the host cell. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 636.	0.9	1
34	Engineering properties of five varieties of coconuts (<i>Cocos nucifera</i> L.) for efficient husk separation. Journal of Natural Fibers, 2020, 17, 589-597.	1.7	15
35	Impact of Ozone Treatment on Seed Germination – A Systematic Review. Ozone: Science and Engineering, 2020, 42, 331-346.	1.4	36
36	Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review. Trends in Food Science and Technology, 2020, 97, 38-54.	7.8	146

#	Article	IF	CITATIONS
37	Mechanical properties of tender coconut (<scp><i>Cocos nucifera</i></scp> L.): Implications for the design of processing machineries. Journal of Food Process Engineering, 2020, 43, e13349.	1.5	14
38	Biospeckle laser technique – A novel non-destructive approach for food quality and safety detection. Trends in Food Science and Technology, 2020, 97, 1-13.	7.8	36
39	Understanding Physiology and Impacts of High Temperature Stress on the Progamic Phase of Coconut (Cocos nucifera L.). Plants, 2020, 9, 1651.	1.6	9
40	Cooking fat types alter the inherent glycaemic response of niche rice varieties through resistant starch (RS) formation. International Journal of Biological Macromolecules, 2020, 162, 1668-1681.	3.6	26
41	Tomato auxin biosynthesis/signaling is reprogrammed by the geminivirus to enhance its pathogenicity. Planta, 2020, 252, 51.	1.6	22
42	Plant transcriptional regulation in modulating cross-tolerance to stress. , 2020, , 231-245.		2
43	Yellow Mosaic Disease (YMD) of Mungbean (Vigna radiata (L.) Wilczek): Current Status and Management Opportunities. Frontiers in Plant Science, 2020, 11, 918.	1.7	38
44	Engineering intervention for production of virgin coconut oil by hot process and multivariate analysis of quality attributes of virgin coconut oil extracted by various methods. Journal of Food Process Engineering, 2020, 43, e13395.	1.5	21
45	Application of infrared spectroscopy techniques for the assessment of quality and safety in spices: a review. Applied Spectroscopy Reviews, 2020, 55, 593-611.	3.4	36
46	Microwave Treatment of Coconut Inflorescence Sap (Kalparasa®): A Panacea to Preserve Quality Attributes. Sugar Tech, 2020, 22, 718-726.	0.9	20
47	Virus and Viroid-Derived Small RNAs as Modulators of Host Gene Expression: Molecular Insights Into Pathogenesis. Frontiers in Microbiology, 2020, 11, 614231.	1.5	22
48	Whole Genome Re-sequencing of Soybean Accession EC241780 Providing Genomic Landscape of Candidate Genes Involved in Rust Resistance. Current Genomics, 2020, 21, 504-511.	0.7	8
49	Genomic Designing of Climate-Smart Coconut. , 2020, , 135-156.		2
50	Ozone based food preservation: a promising green technology for enhanced food safety. Ozone: Science and Engineering, 2019, 41, 17-34.	1.4	158
51	Correlation and principal component analysis of physical properties of tender coconut (<i>Cocos) Tj ETQq1 1 (Engineering, 2019, 42, e13217.</i>).784314 rg 1.5	gBT /Overlock 14
52	Expression of short hairpin RNA (shRNA) targeting AC2 gene of Mungbean yellow mosaic India virus (MYMIV) reduces the viral titre in soybean. 3 Biotech, 2019, 9, 334.	1.1	9
53	Photochemical and biochemical responses of heliconia (Heliconia stricta â€~Iris') to different light intensities in a humid coastal environment. Horticulture Environment and Biotechnology, 2019, 60, 799-808.	0.7	6
54	Ozone: An Advanced Oxidation Technology for Starch Modification. Ozone: Science and Engineering, 2019, 41, 491-507.	1.4	49

S V RAMESH

#	Article	IF	CITATIONS
55	Quantification of a legume begomovirus to evaluate soybean genotypes for resistance to yellow mosaic disease. Journal of Virological Methods, 2019, 268, 24-31.	1.0	10
56	Complete genome characterization and population dynamics of potato virus Y-NTN strain from India. VirusDisease, 2019, 30, 252-260.	1.0	3
57	Stress-responsive miRNAome of Glycine max (L.) Merrill: molecular insights and way forward. Planta, 2019, 249, 1267-1284.	1.6	20
58	Tomato geminivirus encoded RNAi suppressor protein, AC4 interacts with host AGO4 and precludes viral DNA methylation. Gene, 2018, 678, 184-195.	1.0	28
59	Soybean MAGIC Population:A Novel Resource for Genetics and Plant Breeding. Current Science, 2018, 114, 906.	0.4	8
60	Virus resistant transgenic tomato: current status and future prospects. , 2018, , .		0
61	Arecanut and Human Health. Current Science, 2018, 115, 1025.	0.4	0
62	Expression dynamics of Glycine max (L.) Merrill microRNAs (miRNAs) and their targets during Mungbean yellow mosaic India virus (MYMIV) infection. Physiological and Molecular Plant Pathology, 2017, 100, 13-22.	1.3	21
63	Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Research, 2017, 238, 13-23.	1.1	38
64	Comparative conventional and phenomics approaches to assess symbiotic effectiveness of Bradyrhizobia strains in soybean (Glycine max L. Merrill) to drought. Scientific Reports, 2017, 7, 6958.	1.6	14
65	Transgenic Approaches to Combat Plant Viruses Occurring in India. , 2017, , 783-805.		2
66	Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses, 2017, 9, 256.	1.5	80
67	The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome. Virology Journal, 2017, 14, 129.	1.4	15
68	Genomic sequence characterization of Begomovirus infecting soybean and molecular evolutionary genomics of Legume yellow mosaic viruses (LYMVs). Plant OMICS, 2017, 10, 88-96.	0.4	7
69	Noncoding RNA-Based Genetically Modified Crops. , 2016, , 51-62.		0
70	Sequence characterization, molecular phylogeny reconstruction and recombination analysis of the large RNA of Tomato spotted wilt virus (Tospovirus: Bunyaviridae) from the United States. BMC Research Notes, 2016, 9, 200.	0.6	6
71	Soybean (<i>Clycine max</i>) Micrornas Display Proclivity to Repress Begomovirus Genomes. Current Science, 2016, 110, 424.	0.4	11
72	Molecular Diversity Analysis of Coat Protein Gene Encoded by Legume Begomoviruses and PCR Assay to Detect Yellow Mosaic Viruses Infecting Soybean in India. British Biotechnology Journal, 2016, 12, 1-10.	0.4	6

#	Article	IF	CITATIONS
73	TreeBASE a bioinformatics tool for phylogenetic analysis: Submission guidelines made easy. Bioscience Biotechnology Research Communications, 2016, 9, 263-265.	0.1	0
74	Viral Micro RNA Transcriptomics (miRNAomics). Transcriptomics: Open Access, 2015, 03, .	0.2	4
75	Morpho-agronomic characterization of Indian soybean for grouping and varietal protection. Indian Journal of Genetics and Plant Breeding, 2015, 75, 382.	0.2	1
76	Physiological response to drought and Dehydration responsive transcripts (DRTs) from the leaves of water-deficit Indian soybean [Glycine max (L.) Merrill cv NRC7]. Transcriptomics: Open Access, 2015, 03, .	0.2	1
77	Complete genomic characterization of a potato mop-top virus isolate from the United States. Archives of Virology, 2014, 159, 3427-3433.	0.9	13
78	Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes, 2014, 48, 1-14.	0.7	36
79	Global analysis of population structure, spatial and temporal dynamics of genetic diversity, and evolutionary lineages of Iris yellow spot virus (Tospovirus: Bunyaviridae). Gene, 2014, 547, 111-118.	1.0	8
80	Advances in Soybean Genomics. , 2014, , 41-72.		5
81	Non-coding RNAs in Crop Genetic Modification: Considerations and Predictable Environmental Risk Assessments (ERA). Molecular Biotechnology, 2013, 55, 87-100.	1.3	17
82	Silencing potential of viral derived RNAi constructs in Tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Research, 2010, 19, 45-55.	1.3	52
83	Small RNA mediated silencing to target Tomato leaf curl virus. Journal of Plant Interactions, 2007, 2, 213-218.	1.0	5
84	Hairpin RNA-Mediated Strategies for Silencing of <i>Tomato Leaf Curl Virus</i> AC1 and AC4 Genes for Effective Resistance in Plants. Oligonucleotides, 2007, 17, 251-257.	2.7	72
85	Moisture content and water activity of arecanut samples: A need to revisit storage guidelines. Journal of Plantation Crops, 0, , 136-141.	0.1	1
86	Small RNAs and viral interference CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	1
87	Transient computer simulation of the temperature profile in different packaging materials: An optimization of thermal treatment of tender coconut water. Journal of Food Process Engineering, 0, ,	1.5	6