
Lisa M Savage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340397/publications.pdf Version: 2024-02-01

LISA M SAVACE

#	Article	IF	CITATIONS
1	Sex differences in cholinergic circuits and behavioral disruptions following chronic ethanol exposure with and without thiamine deficiency. Alcoholism: Clinical and Experimental Research, 2021, 45, 1013-1027.	2.4	1
2	Adolescent Ethanol Exposure Alters Cholinergic Function and Apical Dendritic Branching Within the Orbital Frontal Cortex. Neuroscience, 2021, 473, 52-65.	2.3	6
3	Adolescent Binge-Type Ethanol Exposure in Rats Mirrors Age-Related Cognitive Decline by Suppressing Cholinergic Tone and Hippocampal Neurogenesis. Frontiers in Behavioral Neuroscience, 2021, 15, 772857.	2.0	13
4	The Effect of Chronic Ethanol Exposure and Thiamine Deficiency on Myelinâ€related Genes in the Cortex and the Cerebellum. Alcoholism: Clinical and Experimental Research, 2020, 44, 2481-2493.	2.4	5
5	Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychology Review, 2020, 31, 447-471.	4.9	7
6	Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. International Review of Neurobiology, 2019, 148, 101-168.	2.0	41
7	General anesthetic exposure in adolescent rats causes persistent maladaptations in cognitive and affective behaviors and neuroplasticity. Neuropharmacology, 2019, 150, 153-163.	4.1	19
8	Persistent Alterations of Accumbal Cholinergic Interneurons and Cognitive Dysfunction after Adolescent Intermittent Ethanol Exposure. Neuroscience, 2019, 404, 153-164.	2.3	29
9	Preface: Setting the stage for understanding alcohol effects in late aging: A special issue including both human and rodent studies. International Review of Neurobiology, 2019, 148, xiii-xxv.	2.0	4
10	Nucleus reuniens of the midline thalamus of a rat is specifically damaged after early postnatal alcohol exposure. NeuroReport, 2019, 30, 748-752.	1.2	12
11	A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcoholâ€Related Brain Damage. Alcoholism: Clinical and Experimental Research, 2019, 43, 425-438.	2.4	21
12	Nerve Growth Factor Is Responsible for Exercise-Induced Recovery of Septohippocampal Cholinergic Structure and Function. Frontiers in Neuroscience, 2018, 12, 773.	2.8	24
13	BDNF regains function in hippocampal long-term potentiation deficits caused by diencephalic damage. Learning and Memory, 2017, 24, 81-85.	1.3	10
14	Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats. Neuroscience, 2017, 348, 324-334.	2.3	68
15	Adolescent binge ethanol exposure alters specific forebrain cholinergic cell populations and leads to selective functional deficits in the prefrontal cortex. Neuroscience, 2017, 361, 129-143.	2.3	52
16	Chronic Drinking During Adolescence Predisposes the Adult Rat for Continued Heavy Drinking: Neurotrophin and Behavioral Adaptation after Long-Term, Continuous Ethanol Exposure. PLoS ONE, 2016, 11, e0149987.	2.5	38
17	Exercise leads to the re-emergence of the cholinergic/nestin neuronal phenotype within the medial septum/diagonal band and subsequent rescue of both hippocampal ACh efflux and spatial behavior. Experimental Neurology, 2016, 278, 62-75.	4.1	32
18	Interactions Between Chronic Ethanol Consumption and Thiamine Deficiency on Neural Plasticity, Spatial Memory, and Cognitive Flexibility. Alcoholism: Clinical and Experimental Research, 2015, 39, 2143-2153.	2.4	52

LISA M SAVAGE

#	Article	IF	CITATIONS
19	The role of ventral midline thalamus in cholinergic-based recovery in the amnestic rat. Neuroscience, 2015, 285, 260-268.	2.3	6
20	Medial Septum-Diagonal Band of Broca (MSDB) GABAergic Regulation of Hippocampal Acetylcholine Efflux Is Dependent on Cognitive Demands. Journal of Neuroscience, 2014, 34, 506-514.	3.6	67
21	Differential cortical neurotrophin and cytogenetic adaptation after voluntary exercise in normal and amnestic rats. Neuroscience, 2014, 258, 131-146.	2.3	19
22	Sustaining high acetylcholine levels in the frontal cortex, but not retrosplenial cortex, recovers spatial memory performance in a rodent model of diencephalic amnesia Behavioral Neuroscience, 2012, 126, 226-236.	1.2	10
23	Thiamine deficiency degrades the link between spatial behavior and hippocampal synapsin I and phosphorylated synapsin I protein levels. Behavioural Brain Research, 2012, 232, 421-425.	2.2	11
24	Translational Rodent Models of Korsakoff Syndrome Reveal the Critical Neuroanatomical Substrates of Memory Dysfunction and Recovery. Neuropsychology Review, 2012, 22, 195-209.	4.9	43
25	Brain and behavioral pathology in an animal model of Wernicke's encephalopathy and Wernicke–Korsakoff Syndrome. Brain Research, 2012, 1436, 178-192.	2.2	36
26	Alcohol-related amnesia and dementia: Animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiology of Learning and Memory, 2011, 96, 596-608.	1.9	113
27	Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke–Korsakoff syndrome. Brain Research, 2011, 1391, 132-146.	2.2	14
28	Anterior thalamic lesions alter both hippocampal-dependent behavior and hippocampal acetylcholine release in the rat. Learning and Memory, 2011, 18, 751-758.	1.3	30
29	Differential effects of systemic and intraseptal administration of the acetylcholinesterase inhibitor tacrine on the recovery of spatial behavior in an animal model of diencephalic amnesia. European Journal of Pharmacology, 2010, 629, 31-39.	3.5	11
30	Cortical cholinergic abnormalities contribute to the amnesic state induced by pyrithiamineâ€induced thiamine deficiency in the rat. European Journal of Neuroscience, 2010, 32, 847-858.	2.6	34
31	Memory for reward location is enhanced even though acetylcholine efflux within the amygdala is impaired in rats with damage to the diencephalon produced by thiamine deficiency. Neurobiology of Learning and Memory, 2010, 94, 554-560.	1.9	4
32	Blocking GABA-A receptors in the medial septum enhances hippocampal acetylcholine release and behavior in a rat model of diencephalic amnesia. Pharmacology Biochemistry and Behavior, 2009, 92, 480-487.	2.9	25
33	Reward expectation alters learning and memory: The impact of the amygdala on appetitive-driven behaviors. Behavioural Brain Research, 2009, 198, 1-12.	2.2	49
34	Acetylcholine efflux from retrosplenial areas and hippocampal sectors during maze exploration. Behavioural Brain Research, 2009, 201, 272-278.	2.2	19
35	The role of cholinergic and GABAergic medial septal/diagonal band cell populations in the emergence of diencephalic amnesia. Neuroscience, 2009, 160, 32-41.	2.3	31
36	Increasing hippocampal acetylcholine levels enhance behavioral performance in an animal model of diencephalic amnesia. Brain Research, 2008, 1234, 116-127.	2.2	35

LISA M SAVAGE

#	Article	IF	CITATIONS
37	Impaired, spared, and enhanced ACh efflux across the hippocampus and striatum in diencephalic amnesia is dependent on task demands. Neurobiology of Learning and Memory, 2008, 90, 237-244.	1.9	27
38	Differential involvement of the basolateral amygdala, orbitofrontal cortex, and nucleus accumbens core in the acquisition and use of reward expectancies Behavioral Neuroscience, 2007, 121, 896-906.	1.2	51
39	Blunted hippocampal, but not striatal, acetylcholine efflux parallels learning impairment in diencephalic-lesioned rats. Neurobiology of Learning and Memory, 2007, 87, 123-132.	1.9	29
40	Basolateral amygdala inactivation by muscimol, but not ERK/MAPK inhibition, impairs the use of reward expectancies during working memory. European Journal of Neuroscience, 2007, 26, 3645-3651.	2.6	10
41	Selective septohippocampal – but not forebrain amygdalar – cholinergic dysfunction in diencephalic amnesia. Brain Research, 2007, 1139, 210-219.	2.2	30
42	Microdialysis measures of functional increases in ACh release in the hippocampus with and without inclusion of acetylcholinesterase inhibitors in the perfusate. Journal of Neurochemistry, 2006, 97, 697-706.	3.9	47
43	The role of the CABAA agonist muscimol on memory performance: Reward contingencies determine the nature of the deficit. Neurobiology of Learning and Memory, 2005, 84, 184-191.	1.9	22
44	The effects of hippocampal lesions on learning, memory, and reward expectancies. Neurobiology of Learning and Memory, 2004, 82, 109-119.	1.9	46
45	Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult. Behavioural Brain Research, 2004, 148, 93-105.	2.2	32
46	Diencephalic Damage Decreases Hippocampal Acetylcholine Release During Spontaneous Alternation Testing. Learning and Memory, 2003, 10, 242-246.	1.3	61
47	The differential outcomes procedure can interfere or enhance operant rule learning. Integrative Psychological and Behavioral Science, 2002, 38, 17-35.	0.3	11
48	Aging potentiates the acute and chronic neurological symptoms of pyrithiamine-induced thiamine deficiency in the rodent. Behavioural Brain Research, 2001, 119, 167-177.	2.2	41
49	In search of the neurobiological underpinnings of the differential outcomes effect. Integrative Psychological and Behavioral Science, 2001, 36, 182-195.	0.3	38
50	Using animal models to address the memory deficits of Wernicke-Korsakoff syndrome , 2001, , 281-292.		3
51	Alcohol-Induced Brain Pathology and Behavioral Dysfunction: Using an Animal Model To Examine Sex Differences. Alcoholism: Clinical and Experimental Research, 2000, 24, 465-475.	2.4	37
52	Alcohol-induced brain pathology and behavioral dysfunction: using an animal model to examine sex differences. Alcoholism: Clinical and Experimental Research, 2000, 24, 465-75.	2.4	19
53	Memory enhancement in aged rats: The differential outcomes effect. Developmental Psychobiology, 1999, 35, 318-327.	1.6	36
54	Rats exposed to acute pyrithiamine-induced thiamine deficiency are more sensitive to the amnestic effects of scopolamine and MK-801: examination of working memory, response selection, and reinforcement contingencies. Behavioural Brain Research, 1999, 104, 13-26.	2.2	26

LISA M SAVAGE

#	Article	IF	CITATIONS
55	Effects of lesions of thalamic intralaminar and midline nuclei and internal medullary lamina on spatial memory and object discrimination Behavioral Neuroscience, 1998, 112, 1339-1352.	1.2	27
56	The effects of lesions to thalamic lateral internal medullary lamina and posterior nuclei on learning, memory and habituation in the rat. Behavioural Brain Research, 1997, 82, 133-147.	2.2	76
57	General Learned Irrelevance: A Pavlovian Analog to Learned Helplessness. Learning and Motivation, 1997, 28, 230-247.	1.2	19
58	Neuropathology of thiamine deficiency: an update on the comparative analysis of human disorders and experimental models. Metabolic Brain Disease, 1996, 11, 19-37.	2.9	95
59	The influence of sequential information in rats: Learning, memory, and the effects of amnestic drugs. Learning and Motivation, 1995, 26, 300-322.	1.2	3
60	Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behavioural Brain Research, 1995, 68, 75-89.	2.2	173
61	The effects of scopolamine, diazepam, and lorazepam on working memory in pigeons: An analysis of reinforcement procedures and sample problem type. Pharmacology Biochemistry and Behavior, 1994, 48, 183-191.	2.9	29
62	Behavioral and pharmacological analyses of memory: New behavioral options for remediation , 0, , 231-245.		11