
Sadia Mohsin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3403927/publications.pdf Version: 2024-02-01

ΝΟΗSIN

#	Article	IF	CITATIONS
1	Uncoupling protein 2-mediated metabolic adaptations define cardiac cell function in the heart during transition from young to old age. Stem Cells Translational Medicine, 2021, 10, 144-156.	1.6	10
2	Cardiac Remodeling During Pregnancy With Metabolic Syndrome. Circulation, 2021, 143, 699-712.	1.6	11
3	Transcriptional Profiling of Cardiac Cells Links Age-Dependent Changes in Acetyl-CoA Signaling to Chromatin Modifications. International Journal of Molecular Sciences, 2021, 22, 6987.	1.8	3
4	Bmi1 Augments Proliferation and Survival of Cortical Bone-Derived Stem Cells after Injury through Novel Epigenetic Signaling via Histone 3 Regulation. International Journal of Molecular Sciences, 2021, 22, 7813.	1.8	1
5	Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart. International Journal of Molecular Sciences, 2021, 22, 7764.	1.8	18
6	Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H684-H701.	1.5	16
7	Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1014-H1029.	1.5	14
8	LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biology, 2021, 47, 102162.	3.9	10
9	Cell Surface and Functional Features of Cortical Bone Stem Cells. International Journal of Molecular Sciences, 2021, 22, 11849.	1.8	Ο
10	HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Science Translational Medicine, 2020, 12, .	5.8	75
11	The Regulatory Role of T Cell Responses in Cardiac Remodeling Following Myocardial Infarction. International Journal of Molecular Sciences, 2020, 21, 5013.	1.8	27
12	Stem Cell Metabolism: Powering Cell-Based Therapeutics. Cells, 2020, 9, 2490.	1.8	27
13	Cortical Bone Derived Stem Cells Modulate Cardiac Fibroblast Response via miR-18a in the Heart After Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 494.	1.8	11
14	<i>Abcg2</i> â€expressing side population cells contribute to cardiomyocyte renewal through fusion. FASEB Journal, 2020, 34, 5642-5657.	0.2	9
15	Healing the Broken Heart; The Immunomodulatory Effects of Stem Cell Therapy. Frontiers in Immunology, 2020, 11, 639.	2.2	29
16	Role of Stem Cell–Derived Microvesicles in Cardiovascular Disease. Journal of Cardiovascular Pharmacology, 2020, 76, 650-657.	0.8	3
17	Stem cell-derived paracrine factors modulate cardiac repair. , 2020, , 116-145.		Ο
18	Cortical bone-derived stem cell therapy reduces apoptosis after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H820-H829.	1.5	16

Sadia Mohsin

#	Article	IF	CITATIONS
19	Cortical Bone Derived Stem Cells for Cardiac Wound Healing. Korean Circulation Journal, 2019, 49, 314.	0.7	12
20	Transient Introduction of miR-294 in the Heart Promotes Cardiomyocyte Cell Cycle Reentry After Injury. Circulation Research, 2019, 125, 14-25.	2.0	81
21	Abstract 760: Metabolic Syndrome Impairs Cardiac Remodeling During Pregnancy in Mice. Circulation Research, 2019, 125, .	2.0	0
22	Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy. Circulation Research, 2017, 121, 113-124.	2.0	52
23	Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction. Circulation Research, 2017, 121, 125-136.	2.0	36
24	Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction. Circulation Research, 2017, 121, 1263-1278.	2.0	45
25	Serum from CCl ₄ -induced acute rat injury model induces differentiation of ADSCs towards hepatic cells and reduces liver fibrosis. Growth Factors, 2017, 35, 144-160.	0.5	11
26	Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H620-H630.	1.5	12
27	Pim1 Kinase Overexpression Enhances ckit+ Cardiac Stem Cell Cardiac Repair Following Myocardial Infarction in Swine. Journal of the American College of Cardiology, 2016, 68, 2454-2464.	1.2	69
28	Acute Catecholamine Exposure Causes Reversible Myocyte Injury Without Cardiac Regeneration. Circulation Research, 2016, 119, 865-879.	2.0	71
29	Abstract 2: Cortical Bone Stem Cells Derived Exosomes as Potent Modulator of Cardiac Immune Response and Repair After Injury. Circulation Research, 2016, 119, .	2.0	0
30	Abstract 364: Cortical Bone Stem Cells Derived Exosomes as Potent Modulator of Cardiac Immune Response and Repair After Injury. Circulation Research, 2016, 119, .	2.0	0
31	Stem Cells and Cardiac Repair. Stem Cells International, 2015, 2015, 1-2.	1.2	0
32	Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells. Journal of Biological Chemistry, 2015, 290, 13935-13947.	1.6	26
33	Nucleostemin Rejuvenates CardiacÂProgenitor Cells and AntagonizesÂMyocardial Aging. Journal of the American College of Cardiology, 2015, 65, 133-147.	1.2	67
34	Hrd1 and ER-Associated Protein Degradation, ERAD, Are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circulation Research, 2015, 117, 536-546.	2.0	89
35	Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circulation Research, 2015, 117, 1024-1033.	2.0	29
36	GDF11 Does Not Rescue Aging-Related Pathological Hypertrophy. Circulation Research, 2015, 117, 926-932.	2.0	158

Sadia Mohsin

#	Article	IF	CITATIONS
37	Anoctamin 6 Regulates C2C12 Myoblast Proliferation. PLoS ONE, 2014, 9, e92749.	1.1	22
38	Cardiac Progenitor Cells Engineered With βARKct Have Enhanced β-Adrenergic Tolerance. Molecular Therapy, 2014, 22, 178-185.	3.7	12
39	Predicting the Future With Stem Cells. Circulation, 2014, 129, 136-138.	1.6	6
40	Differential Regulation of Cellular Senescence and Differentiation by Prolyl Isomerase Pin1 in Cardiac Progenitor Cells. Journal of Biological Chemistry, 2014, 289, 5348-5356.	1.6	26
41	Rejuvenation of Human Cardiac Progenitor Cells With Pim-1 Kinase. Circulation Research, 2013, 113, 1169-1179.	2.0	110
42	Î ² -Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation. Circulation Research, 2013, 112, 476-486.	2.0	59
43	Mesenchymal stem cells conditioned with glucose depletion augments their ability to repairâ€infarcted myocardium. Journal of Cellular and Molecular Medicine, 2012, 16, 2518-2529.	1.6	51
44	Human Cardiac Progenitor Cells Engineered With Pim-I Kinase Enhance Myocardial Repair. Journal of the American College of Cardiology, 2012, 60, 1278-1287.	1.2	140
45	Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6145-6150.	3.3	62
46	Enhanced hepatic differentiation of mesenchymal stem cells after pretreatment with injured liver tissue. Differentiation, 2011, 81, 42-48.	1.0	61
47	Empowering Adult Stem Cells for Myocardial Regeneration. Circulation Research, 2011, 109, 1415-1428.	2.0	102
48	Repair of senescent myocardium by mesenchymal stem cells is dependent on the age of donor mice. Journal of Cellular and Molecular Medicine, 2011, 15, 1515-1527.	1.6	82
49	Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. European Heart Journal, 2011, 32, 2179-2188.	1.0	79
50	A new locus for autosomal recessive congenital cataract identified in a Pakistani family. Molecular Vision, 2010, 16, 240-5.	1.1	25
51	Autosomal recessive congenital cataract in consanguineous Pakistani families is associated with mutations in GALK1. Molecular Vision, 2010, 16, 682-8.	1.1	16
52	IGF-1 and G-CSF complement each other in BMSC migration towards infarcted myocardium in a novel in vitro model. Cell Biology International, 2009, 33, 650-657.	1.4	8