Gerko Oskam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3403682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies towards Cost Reduction in the Manufacture of Printable Perovskite Solar Modules. Energies, 2022, 15, 641.	1.6	10
2	Electrodeposition of Simonkolleite as a Low-Temperature Route to Crystalline ZnO Films for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2022, 169, 042504.	1.3	0
3	Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation. Physical Chemistry Chemical Physics, 2022, 24, 15657-15671.	1.3	34
4	Benzothiadiazole-based photosensitizers for efficient and stable dye-sensitized solar cells and 8.7% efficiency semi-transparent mini-modules. Sustainable Energy and Fuels, 2021, 5, 144-153.	2.5	48
5	(Invited) Characterization of Charge Transfer and Recombination Processes at Metal Oxide Semiconductors for Solar Water Splitting. ECS Meeting Abstracts, 2021, MA2021-01, 1251-1251.	0.0	0
6	Fabrication of copper cobaltite films by drop-on-demand inkjet printing. Materials Letters, 2021, 290, 129499.	1.3	3
7	FDTD modeling of sputtered Mo–Al2O3 nanocomposites. Solar Energy Materials and Solar Cells, 2021, 225, 111027.	3.0	6
8	Characterization of Photochromic Dye Solar Cells Using Small-Signal Perturbation Techniques. ACS Applied Energy Materials, 2021, 4, 8941-8952.	2.5	6
9	Electrodeposition of cobalt-manganese oxide selective coatings for solar-thermal applications. Electrochimica Acta, 2021, 391, 138906.	2.6	7
10	Illumination Intensity Dependence of the Recombination Mechanism in Mixed Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1347-1356.	1.3	15
11	Optical, Electrochemical, and Photoelectrochemical Behavior of Copper Pyrovanadate: A Unified Theoretical and Experimental Study. Journal of Physical Chemistry C, 2021, 125, 19609-19620.	1.5	4
12	Sputter deposition of Mo-alumina cermet solar selective coatings: Interrelation between residual oxygen incorporation, structure and optical properties. Materials Research Express, 2021, 8, 105506.	0.8	2
13	"Tailoring the TiO2 phases through microwave-assisted hydrothermal synthesis: Comparative assessment of bactericidal activity― Materials Science and Engineering C, 2020, 117, 111290.	3.8	9
14	Identification of the loss mechanisms in TiO2 and ZnO solar cells based on blue, piperidinyl-substituted, mono-anhydride perylene dyes. Electrochimica Acta, 2020, 355, 136638.	2.6	3
15	Electrodeposited black cobalt selective coatings for application in solar thermal collectors: Fabrication, characterization, and stability. Solar Energy, 2020, 207, 1132-1145.	2.9	23
16	Simulated annealing and finite volume method to study the microstructure isotropy effect on the effective transport coefficient of a 2D unidirectional composite. Materials Today Communications, 2020, 24, 101343.	0.9	4
17	Open-Circuit Voltage (<i>V</i> _{OC}) Enhancement in TiO ₂ -Based DSSCs: Incorporation of ZnO Nanoflowers and Au Nanoparticles. ACS Omega, 2020, 5, 10977-10986.	1.6	47
18	Numerical Simulation to Determine the Effect of Topological Entropy on the Effective Transport Coefficient of Unidirectional Composites. Crystals, 2020, 10, 423.	1.0	2

#	Article	IF	CITATIONS
19	Phase-Pure Copper Vanadate (α-CuV ₂ O ₆): Solution Combustion Synthesis and Characterization. Chemistry of Materials, 2020, 32, 6247-6255.	3.2	27
20	An intensity-modulated photocurrent spectroscopy study of the charge carrier dynamics of WO3/BiVO4 heterojunction systems. Solar Energy Materials and Solar Cells, 2020, 208, 110378.	3.0	31
21	Impact of the implementation of a mesoscopic TiO2 film from a low-temperature method on the performance and degradation of hybrid perovskite solar cells. Solar Energy, 2020, 201, 836-845.	2.9	4
22	Determination of the nonradiative conversion efficiency of lead mixed-halide perovskites using optical and photothermal spectroscopy. Applied Optics, 2020, 59, D201.	0.9	1
23	Charge Transfer and Recombination Processes at p-CuBi2O4 Photoelectrodes. ECS Meeting Abstracts, 2020, MA2020-02, 3883-3883.	0.0	Ο
24	Improvement Strategies for Photoelectrochemical Water Splitting at n-Type Oxide Semiconductors: A Case Study of WO3–Based Systems. ECS Meeting Abstracts, 2020, MA2020-02, 3882-3882.	0.0	0
25	Electrodeposition of selective coatings based on black nickel for flat-plate solar water heaters. Solar Energy, 2019, 194, 302-310.	2.9	31
26	ZnO-based dye-sensitized solar cells. , 2019, , 145-204.		4
27	Inkjet-Printed Reduced Graphene Oxide (rGO) Films For Electrocatalytic Applications. Journal of the Electrochemical Society, 2019, 166, H3279-H3285.	1.3	13
28	Photoelectrochemical water oxidation at FTO WO3@CuWO4 and FTO WO3@CuWO4 BiVO4 heterojunction systems: An IMPS analysis. Electrochimica Acta, 2019, 308, 317-327.	2.6	43
29	Correlation between the Effectiveness of the Electron-Selective Contact and Photovoltaic Performance of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 877-882.	2.1	6
30	Modulated anodization synthesis of Sn-doped iron oxide with enhanced solar water splitting performance. Materials Today Chemistry, 2019, 12, 7-15.	1.7	12
31	(Invited) Photoelectrochemistry of Semiconducting Oxide Materials for Solar Water Splitting. ECS Meeting Abstracts, 2019, , .	0.0	0
32	On the use of photothermal techniques for the characterization of solar-selective coatings. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	14
33	Homogeneous and highly controlled deposition of low viscosity inks and application on fully printable perovskite solar cells. Science and Technology of Advanced Materials, 2018, 19, 1-9.	2.8	47
34	Surface Photovoltage Spectroscopy Resolves Interfacial Charge Separation Efficiencies in ZnO Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2018, 122, 2582-2588.	1.5	26
35	Stable inks for inkjet printing of TiO2 thin films. Materials Science in Semiconductor Processing, 2018, 81, 75-81.	1.9	25
36	Determination of the changes on the thermal and optical properties of selective solar absorber coatings induced by prolonged thermal treatment. AIP Conference Proceedings, 2018, , .	0.3	0

#	Article	IF	CITATIONS
37	Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi ₂ O ₄ Electrodes for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2018, 122, 27169-27179.	1.5	41
38	Electrical Characterization of Schottky Diodes Based on Inkjet-Printed TiO ₂ Films. IEEE Electron Device Letters, 2018, 39, 1940-1943.	2.2	13
39	Brookite-Based Dye-Sensitized Solar Cells: Influence of Morphology and Surface Chemistry on Cell Performance. Journal of Physical Chemistry C, 2018, 122, 14277-14288.	1.5	13
40	Influence of Brookite Impurities on the Raman Spectrum of TiO ₂ Anatase Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 19921-19930.	1.5	60
41	Optical and thermal properties of selective absorber coatings under CSP conditions. AIP Conference Proceedings, 2017, , .	0.3	8
42	Eco-friendly synthesis of egg-white capped silver nanoparticles for rapid, selective, and sensitive detection of Hg(II). MRS Communications, 2017, 7, 695-700.	0.8	11
43	High throughput fabrication of mesoporous carbon perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 18643-18650.	5.2	65
44	Charge transfer and recombination kinetics at WO3 for photoelectrochemical water oxidation. Electrochimica Acta, 2017, 258, 900-908.	2.6	33
45	Improving the mass transport of copper-complex redox mediators in dye-sensitized solar cells by reducing the inter-electrode distance. Physical Chemistry Chemical Physics, 2017, 19, 32132-32142.	1.3	24
46	ZnO-based dye-sensitized solar cells: Effects of redox couple and dye aggregation. Electrochimica Acta, 2017, 258, 396-404.	2.6	24
47	Inkjet Printing as High-Throughput Technique for the Fabrication of NiCo ₂ O ₄ Films. Advances in Materials Science and Engineering, 2017, 2017, 1-9.	1.0	5
48	A Critical Evaluation of the Influence of the Dark Exchange Current on the Performance of Dye-Sensitized Solar Cells. Materials, 2016, 9, 33.	1.3	9
49	Defects in Porous Networks of WO ₃ Particle Aggregates. ChemElectroChem, 2016, 3, 658-667.	1.7	11
50	Dye-sensitized solar cell scale-up: Influence of substrate resistance. Journal of Renewable and Sustainable Energy, 2016, 8, 023704.	0.8	14
51	Influence of morphology on the performance of ZnO-based dye-sensitized solar cells. RSC Advances, 2016, 6, 37424-37433.	1.7	18
52	Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper. Electrochimica Acta, 2016, 213, 460-468.	2.6	23
53	What difference does a thiophene make? Evaluation of a 4,4′-bis(thiophene) functionalised 2,2′-bipyridyl copper(I) complex in a dye-sensitized solar cell. Dyes and Pigments, 2016, 134, 419-426.	2.0	22
54	The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes. Physical Chemistry Chemical Physics, 2016, 18, 2303-2308.	1.3	7

#	Article	IF	CITATIONS
55	Correction: The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes. Physical Chemistry Chemical Physics, 2016, 18, 14139-14139.	1.3	0
56	Electrodeposition and Characterization of Selective Coatings Based on Black Cobalt for Solar-to-Thermal Energy Conversion. ECS Transactions, 2015, 69, 7-13.	0.3	4
57	The Impact of the Electrical Nature of the Metal Oxide on the Performance in Dye-Sensitized Solar Cells: New Look at Old Paradigms. Journal of Physical Chemistry C, 2015, 119, 3931-3944.	1.5	53
58	Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Materials Science in Semiconductor Processing, 2015, 37, 87-92.	1.9	32
59	Organic dyes for the sensitization of nanostructured ZnO photoanodes: effect of the anchoring functions. RSC Advances, 2015, 5, 68929-68938.	1.7	7
60	Synthesis and characterization of WO3 polymorphs: monoclinic, orthorhombic and hexagonal structures. Journal of Materials Science: Materials in Electronics, 2015, 26, 5526-5531.	1.1	47
61	Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion. Journal of Materials Science: Materials in Electronics, 2015, 26, 5553-5561.	1.1	29
62	Photothermal Determination of Infrared Emissivity of Selective Solar Absorbing Coatings. International Journal of Thermophysics, 2015, 36, 1051-1056.	1.0	3
63	Optical and Thermal Characterization of High Reflective Surface with Applications in Thermal-Solar Technology. , 2014, , .		0
64	Photothermal Characterization at MediumTemperature of Thermal-Solar Energy Materials. , 2014, , .		0
65	Effects of UV-Vis Irradiation on Vanadium Etioporphyrins Extracted from Crude Oil and the Role of Nanostructured Titania. International Journal of Photoenergy, 2014, 2014, 1-9.	1.4	2
66	Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations. Physical Chemistry Chemical Physics, 2014, 16, 4082.	1.3	11
67	Characterization of Thermal Losses in an Evacuated Tubular Solar Collector Prototype for Medium Temperature Applications. Energy Procedia, 2014, 57, 2121-2130.	1.8	4
68	Photoelectrochemical water oxidation at electrophoretically deposited WO3 films as a function of crystal structure and morphology. Electrochimica Acta, 2014, 140, 320-331.	2.6	35
69	Mechanisms of Electron Transport and Recombination in ZnO Nanostructures for Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2014, 15, 1088-1097.	1.0	22
70	The effect of titanium dioxide nanoparticles on antioxidant gene expression in tilapia (Oreochromis) Tj ETQq0 () 0 rgBT /O	verlock 10 Tf
71	Antifungal activity of Ca[Zn(OH)3]2·2H2O coatings for the preservation of limestone monuments: An inÂvitro study. International Biodeterioration and Biodegradation, 2014, 91, 1-8.	1.9	19

#	Article	IF	CITATIONS
73	Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells. RSC Advances, 2013, 3, 23361.	1.7	41
74	Antifungal Coatings Based on Ca(OH) ₂ Mixed with ZnO/TiO ₂ Nanomaterials for Protection of Limestone Monuments. ACS Applied Materials & Interfaces, 2013, 5, 1556-1565.	4.0	61
75	Influence of dye chemistry and electrolyte solution on interfacial processes at nanostructured ZnO in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 264, 26-33.	2.0	15
76	Extraction and Characterization of Natural Dyes Applied to ZnO-based DSSC. Materials Research Society Symposia Proceedings, 2013, 1537, 1.	0.1	1
77	Influence of TiO ₂ Film Thickness on the Performance of Dye-Sensitized Solar Cells: Relation Between Optimum Film Thickness and Electron Diffusion Length. Energy and Environment Focus, 2013, 2, 280-286.	0.3	6
78	A Special Issue on Photovoltaics, Solar Energy Materials and Technologies. Energy and Environment Focus, 2013, 2, 255-256.	0.3	0
79	Performance of Porous, Nanocolumnar ZnO Electrodes Obtained at Low Temperature by Plasma-Enhanced Chemical Vapor Deposition in Dye-Sensitized Solar Cells. Energy and Environment Focus, 2013, 2, 270-276.	0.3	2
80	Electrodeposition of ZnO for Application in Dye-sensitized Solar Cells. Journal of New Materials for Electrochemical Systems, 2013, 16, 209-215.	0.3	6
81	Influence of Polyethylene Glycol on the Morphology of Electrodeposited ZnO Films for Dye-Sensitized Solar Cells. ECS Transactions, 2012, 41, 47-53.	0.3	2
82	Origin of Nonlinear Recombination in Dye-Sensitized Solar Cells: Interplay between Charge Transport and Charge Transfer. Journal of Physical Chemistry C, 2012, 116, 22687-22697.	1.5	34
83	A continuity equation for the simulation of the current–voltage curve and the time-dependent properties of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 10285.	1.3	50
84	Effect of a compact ZnO interlayer on the performance of ZnO-based dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2012, 100, 21-26.	3.0	39
85	Direct Estimation of the Electron Diffusion Length in Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 1045-1050.	2.1	34
86	Island growth in electrodeposition. Journal Physics D: Applied Physics, 2011, 44, 443001.	1.3	133
87	Electrodeposition of copper into trenches from a citrate plating bath. Electrochimica Acta, 2011, 56, 9391-9396.	2.6	31
88	Electrodeposition of Copper in Trenches From a Citrate Plating Bath. ECS Transactions, 2010, 25, 195-201.	0.3	6
89	Relation Between the Morphology of Electrodeposited ZnO Films and the Efficiency of Dye-Sensitized Solar Cells. ECS Transactions, 2010, 25, 45-50.	0.3	0
90	Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Solar Energy Materials and Solar Cells, 2010, 94, 40-44.	3.0	234

#	Article	IF	CITATIONS
91	A simple numerical model for the charge transport and recombination properties of dye-sensitized solar cells: A comparison of transport-limited and transfer-limited recombination. Solar Energy Materials and Solar Cells, 2010, 94, 45-50.	3.0	67
92	Treatment of Parkinson's disease: nanostructured sol–gel silica–dopamine reservoirs for controlled drug release in the central nervous system. International Journal of Nanomedicine, 2010, 6, 19.	3.3	36
93	The nucleation kinetics of ZnO nanoparticles from ZnCl2 in ethanol solutions. Nanoscale, 2010, 2, 2710.	2.8	35
94	Electron Diffusion and Back Reaction in Dye-Sensitized Solar Cells: The Effect of Nonlinear Recombination Kinetics. Journal of Physical Chemistry Letters, 2010, 1, 748-751.	2.1	107
95	Ab initio study of the structural stability of fcc-CHx phases. Carbon, 2009, 47, 1637-1642.	5.4	4
96	Numerical Simulation of the Currentâ^`Voltage Curve in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 19722-19731.	1.5	49
97	Controlled Release of Phenytoin from Nanostructured TiO ₂ Reservoirs. Science of Advanced Materials, 2009, 1, 63-68.	0.1	21
98	Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 364-370.	2.0	75
99	Phase-pure TiO ₂ nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008, 19, 145605.	1.3	966
100	Synthesis and characterization of TiO 2 nanoparticles: anatase, brookite, and rutile. , 2007, 6650, 204.		2
101	The Effect of Water on the Nucleation Kinetics of ZnO Nanoparticles. ECS Transactions, 2006, 3, 17-21.	0.3	1
102	Forced Hydrolysis vs Self-Hydrolysis of Zinc Acetate in Ethanol and Iso-butanol. ECS Transactions, 2006, 3, 23-28.	0.3	10
103	A Numerical Model for Charge Transport and Recombination in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 5372-5378.	1.2	102
104	Synthesis of ZnO and TiO2 nanoparticles. Journal of Sol-Gel Science and Technology, 2006, 37, 157-160.	1.1	37
105	Metal oxide nanoparticles: synthesis, characterization and application. Journal of Sol-Gel Science and Technology, 2006, 37, 161-164.	1.1	289
106	Application of correction algorithms for obtaining high-resolution LBIC maps of dye-sensitized solar cells. , 2006, 6197, 178.		0
107	Application of Three TiO2 Polymorphs in Photoelectrochemical Solar Cells. ECS Transactions, 2006, 3, 233-237.	0.3	2
108	Transformation of Amorphous TiO2 Into Crystalline Materials. ECS Transactions, 2006, 3, 47-51.	0.3	2

#	Article	IF	CITATIONS
109	Influence of the reactant concentrations on the synthesis of ZnO nanoparticles. Journal of Colloid and Interface Science, 2005, 288, 313-316.	5.0	39
110	Synthesis of ZnO Nanoparticles in 2-Propanol by Reaction with Water. Journal of Physical Chemistry B, 2005, 109, 11209-11214.	1.2	107
111	Dye-Sensitized SnO2Electrodes with Iodide and Pseudohalide Redox Mediators. Journal of Physical Chemistry B, 2005, 109, 937-943.	1.2	127
112	Influence of Oxide Thickness on Nucleation and Growth of Copper on Tantalum. Journal of the Electrochemical Society, 2004, 151, C369.	1.3	45
113	Influence of solvent on the growth of ZnO nanoparticles. Journal of Colloid and Interface Science, 2003, 263, 454-460.	5.0	302
114	The Growth Kinetics of TiO2Nanoparticles from Titanium(IV) Alkoxide at High Water/Titanium Ratio. Journal of Physical Chemistry B, 2003, 107, 1734-1738.	1.2	308
115	The Influence of Anion on the Coarsening Kinetics of ZnO Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 3124-3130.	1.2	135
116	Deposition of Au[sub x]Ag[sub 1â^'x]/Au[sub y]Ag[sub 1â^'y] Multilayers and Multisegment Nanowires. Journal of the Electrochemical Society, 2003, 150, C523.	1.3	21
117	Electrodeposition of Ni/SiC contacts. Journal of Applied Physics, 2003, 93, 10104-10109.	1.1	4
118	Synthesis and Characterization of Metal Oxide Nanoparticles. , 2003, , 149-156.		0
119	Coarsening of metal oxide nanoparticles. Physical Review E, 2002, 66, 011403.	0.8	130
120	Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. Journal of Physical Chemistry B, 2001, 105, 6867-6873.	1.2	356
121	Electrodeposition of Copper on Silicon from Sulfate Solution. Journal of the Electrochemical Society, 2001, 148, C746.	1.3	52
122	Electrochemical nucleation and growth of copper on Si(111). Surface Science, 2001, 492, 115-124.	0.8	49
123	Epitaxial Assembly in Aged Colloids. Journal of Physical Chemistry B, 2001, 105, 2177-2182.	1.2	244
124	Fabrication of n-type 4H–SiC/Ni junctions using electrochemical deposition. Applied Physics Letters, 2000, 76, 1300-1302.	1.5	19
125	Electrochemistry of Gold Deposition on n-Si(100). Journal of the Electrochemical Society, 2000, 147, 2199.	1.3	68
126	Electrochemical nucleation and growth of gold on silicon. Surface Science, 2000, 446, 103-111.	0.8	58

#	Article	IF	CITATIONS
127	Electrochemical Deposition of Copper on n‣i/TiN. Journal of the Electrochemical Society, 1999, 146, 1436-1441.	1.3	117
128	Sol-Gel Synthesis of Carbon/Silica Gel Electrodes for Lithium Intercalation. Electrochemical and Solid-State Letters, 1999, 2, 610.	2.2	13
129	The Potential Distribution at the Semiconductor/Solution Interface. Journal of Physical Chemistry B, 1998, 102, 7793-7799.	1.2	40
130	Electrochemical deposition of metals onto silicon. Journal Physics D: Applied Physics, 1998, 31, 1927-1949.	1.3	352
131	Characterization of silicon surfaces in HF solution using microwave reflectivity. Journal of Applied Physics, 1998, 83, 2112-2120.	1.1	14
132	Analysis of the impedance response due to surface states at the semiconductor/solution interface. Journal of Applied Physics, 1998, 83, 4309-4323.	1.1	20
133	Solâ^'Gel Synthesis and Characterization of Carbon/Ceramic Composite Electrodes. Journal of Physical Chemistry B, 1998, 102, 2464-2468.	1.2	53
134	Electrochemical fabrication of n-Si/Au Schottky junctions. Applied Physics Letters, 1998, 73, 3241-3243.	1.5	39
135	Crystallographic aspects of pore formation in gallium arsenide and silicon. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 525-539.	0.8	32
136	The formation of porous GaAs in HF solutions. Applied Surface Science, 1997, 119, 160-168.	3.1	48
137	Electron Transport in Porous Nanocrystalline TiO2Photoelectrochemical Cells. The Journal of Physical Chemistry, 1996, 100, 17021-17027.	2.9	394
138	Energetics and Kinetics of Surface States at n-Type Silicon Surfaces in Aqueous Fluoride Solutions. The Journal of Physical Chemistry, 1996, 100, 1801-1806.	2.9	37
139	Characterization of the Silicon / Fluoride Solution Interface by In-Situ Microwave Reflectivity. Materials Research Society Symposia Proceedings, 1996, 451, 197.	0.1	1
140	Electrical Properties of nâ€īype (111) Si in Aqueous  K 4Fe (  CN  ) 6 Solution Recombination Impedance. Journal of the Electrochemical Society, 1996, 143, 2531-2537.	n: I. Interfa 1.3	ice States ar
141	Electrical Properties of nâ€Ţype (III) Si in Aqueous  K 4Fe (  CN  ) 6 Solution: Photocurrent Spectroscopy. Journal of the Electrochemical Society, 1996, 143, 2538-2543.	l. Intensity 1.3	y Modulated
142	In SituMeasurements of Interface States at Silicon Surfaces in Fluoride Solutions. Physical Review Letters, 1996, 76, 1521-1524.	2.9	46
143	Electrochemical Deposition of Metals on Semiconductors. Materials Research Society Symposia Proceedings, 1996, 451, 257.	0.1	8
144	Electrical and optical properties of porous nanocrystalline TiO2 films. The Journal of Physical Chemistry, 1995, 99, 11974-11980.	2.9	165

#	ARTICLE	IF	CITATIONS
145	A Solid State, Dye Sensitized Photoelectrochemical Cell. The Journal of Physical Chemistry, 1995, 99, 17071-17073.	2.9	297
146	The influence of electrodeposited gold on the properties of Ill–V semiconductor electrodes—part 2. A study of the impedance due to gold-related surface states at p-GaAs electrodes. Electrochimica Acta, 1993, 38, 301-306.	2.6	23
147	The influence of electrodeposited gold on the properties of Ill–V semiconductor electrodes—part 3. Results on n-GaAs provided with thick gold I. Electrochimica Acta, 1993, 38, 1115-1121.	2.6	11
148	The influence of electrodeposited gold on the properties of Ill–V semiconductor electrodes—Part 1. Results of current—potential measurements on p-GaAs. Electrochimica Acta, 1993, 38, 291-300.	2.6	17
149	The electrical and electrochemical properties of goldâ€plated InP. Journal of Applied Physics, 1993, 74, 3238-3245.	1.1	15
150	The electrochemistry of InP in aqueous K3Cr(CN)6 solution. Journal of Electroanalytical Chemistry, 1992, 326, 213-230.	1.9	5
151	A reappraisal of the frequency dependence of the impedance of semiconductor electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 315, 65-85.	0.3	50
152	Current-doubling, chemical etching and the mechanism of two-electron reduction reactions at GaAs. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 273, 119-131.	0.3	43
153	Photoelectrochemistry of Semiconducting Oxide Materials for Solar Water Splitting: Characterization of Charge Carrier Dynamics Using IMPS. , 0, , .		0
154	Charge Dynamics at Surface-Modified, Nanostructured Hematite Photoelectrodes for Solar Water Splitting. Journal of the Electrochemical Society, 0, , .	1.3	1