Wendy H Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3403142/publications.pdf

Version: 2024-02-01

49 papers 1,969

304701 22 h-index

42 g-index

52 all docs 52 docs citations

times ranked

52

3036 citing authors

#	Article	IF	Citations
1	Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geoscience, 2012, 5, 538-541.	12.9	313
2	Controls on longâ€term root and leaf litter decomposition in neotropical forests. Global Change Biology, 2009, 15, 1339-1355.	9.5	175
3	How strong is intracanopy leaf plasticity in temperate deciduous trees?. American Journal of Botany, 2006, 93, 829-839.	1.7	171
4	Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 44-52.	4.0	162
5	Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons. MBio, 2019, 10, .	4.1	108
6	Soils' dirty little secret: Depthâ€based comparisons can be inadequate for quantifying changes in soil organic carbon and other mineral soil properties. Global Change Biology, 2020, 26, 3759-3770.	9.5	76
7	Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Global Change Biology, 2021, 27, 2669-2683.	9.5	57
8	Cross-biome assessment of gross soil nitrogen cycling in California ecosystems. Soil Biology and Biochemistry, 2017, 107, 144-155.	8.8	56
9	A test of a fieldâ€based ¹⁵ <scp><scp>N</scp></scp> â€"nitrous oxide pool dilution technique to measure gross <scp><scp>N</scp>₂<scp>O</scp></scp> production in soil. Global Change Biology, 2011, 17, 3577-3588.	9.5	52
10	Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biology and Biochemistry, 2018, 122, 81-90.	8.8	52
11	Frontiers in alley cropping: Transformative solutions for temperate agriculture. Global Change Biology, 2018, 24, 883-894.	9.5	52
12	Woody debris contribution to the carbon budget of selectively logged and maturing mid-latitude forests. Oecologia, 2006, 148, 108-117.	2.0	49
13	Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape. Global Change Biology, 2016, 22, 2228-2237.	9.5	43
14	Looking back to look ahead: a vision for soil denitrification research. Ecology, 2020, 101, e02917.	3.2	41
15	New high precision approach for measuring 15N–N2 gas fluxes from terrestrial ecosystems. Soil Biology and Biochemistry, 2014, 69, 234-241.	8.8	34
16	High potential for iron reduction in upland soils. Ecology, 2015, 96, 2015-2020.	3.2	33
17	Historical soil drainage mediates the response of soil greenhouse gas emissions to intense precipitation events. Biogeochemistry, 2019, 142, 425-442.	3.5	33
18	Microtopographic differences in soil properties and microbial community composition at the field scale. Soil Biology and Biochemistry, 2019, 131, 71-80.	8.8	32

#	Article	IF	CITATIONS
19	Continental-scale patterns of extracellular enzyme activity in the subsoil: an overlooked reservoir of microbial activity. Environmental Research Letters, 2020, 15, 1040a1.	5.2	32
20	Net soil–atmosphere fluxes mask patterns in gross production and consumption of nitrous oxide and methane in a managed ecosystem. Biogeosciences, 2016, 13, 1705-1715.	3.3	29
21	The carbon and nitrogen cycle impacts of reverting perennial bioenergy switchgrass to an annual maize crop rotation. GCB Bioenergy, 2020, 12, 941-954.	5.6	29
22	Hierarchical detection of diverse Clade II (atypical) nosZ genes using new primer sets for classical-and multiplex PCR array applications. Journal of Microbiological Methods, 2020, 172, 105908.	1.6	25
23	Ecosystemâ€scale biogeochemical fluxes from three bioenergy crop candidates: How energy sorghum compares to maize and miscanthus. GCB Bioenergy, 2021, 13, 445-458.	5.6	24
24	Microbially mediated nitrogen retention and loss in a salt marsh soil. Ecosphere, 2015, 6, 1-15.	2.2	22
25	Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics. Global Biogeochemical Cycles, 2017, 31, 1435-1453.	4.9	22
26	Optimization of PCR primers to detect phylogenetically diverse nrfA genes associated with nitrite ammonification. Journal of Microbiological Methods, 2019, 160, 49-59.	1.6	22
27	Dynamic Controls on Fieldâ€Scale Soil Nitrous Oxide Hot Spots and Hot Moments Across a Microtopographic Gradient. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3618-3634.	3.0	21
28	Mycorrhizal type effects on leaf litter decomposition depend on litter quality and environmental context. Biogeochemistry, 2021, 155, 21-38.	3.5	20
29	Invasive perennial forb effects on gross soil nitrogen cycling and nitrous oxide fluxes depend on phenology. Ecology, 2019, 100, e02716.	3.2	19
30	Comparing DNA, RNA and protein levels for measuring microbial dynamics in soil microcosms amended with nitrogen fertilizer. Scientific Reports, 2019, 9, 17630.	3.3	18
31	Improvements in soil health and soil carbon sequestration by an agroforestry for food production system. Agriculture, Ecosystems and Environment, 2022, 333, 107945.	5.3	18
32	Application of the N ₂ /Ar technique to measuring soilâ€etmosphere N ₂ fluxes. Rapid Communications in Mass Spectrometry, 2012, 26, 449-459.	1.5	17
33	Light availability and rhizobium variation interactively mediate the outcomes of legume–rhizobium symbiosis. American Journal of Botany, 2020, 107, 229-238.	1.7	15
34	A new approach for removing iron interference from soil nitrate analysis. Soil Biology and Biochemistry, 2012, 46, 123-128.	8.8	14
35	Effects of triclosan and triclocarban on denitrification and N2O emissions in paddy soil. Science of the Total Environment, 2019, 695, 133782.	8.0	13
36	Bioenergy Underground: Challenges and opportunities for phenotyping roots and the microbiome for sustainable bioenergy crop production. The Plant Phenome Journal, 2022, 5, .	2.0	9

3

#	Article	IF	CITATIONS
37	Iron Redox Reactions Can Drive Microtopographic Variation in Upland Soil Carbon Dioxide and Nitrous Oxide Emissions. Soil Systems, 2019, 3, 60.	2.6	7
38	Intra―and interspecific variation in trophic ecology of â€~predatory' ants in the subfamily Ponerinae. Ecological Entomology, 2020, 45, 444-455.	2.2	7
39	The effects of tree-mycorrhizal type on soil organic matter properties from neighborhood to watershed scales. Soil Biology and Biochemistry, 2021, 161, 108385.	8.8	7
40	Assessing the impacts of pre-growing-season weather conditions on soil nitrogen dynamics and corn productivity in the U.S. Midwest. Field Crops Research, 2022, 284, 108563.	5.1	7
41	Intra―and interâ€annual variability of nitrification in the rhizosphere of fieldâ€grown bioenergy sorghum. GCB Bioenergy, 2022, 14, 393-410.	5.6	6
42	Measuring gross <scp>N₂O</scp> production in soil: a reply to <scp>W</scp> ell and <scp>B</scp> utterbachâ€ <scp>B</scp> ahl. Global Change Biology, 2013, 19, 985-987.	9.5	4
43	Sequence alignments and validation of PCR primers used to detect phylogenetically diverse nrfA genes associated with dissimilatory nitrate reduction to ammonium (DNRA). Data in Brief, 2019, 25, 104016.	1.0	4
44	Nitrous oxide fluxes over establishing biofuel crops: Characterization of temporal variability using the crossâ€wavelet analysis. GCB Bioenergy, 2020, 12, 756-770.	5.6	4
45	Spatiotemporal Derivation of Intermittent Ponding in a Maize–Soybean Landscape from Planet Labs CubeSat Images. Remote Sensing, 2020, 12, 1942.	4.0	4
46	Comparative establishment and yield of bioenergy sorghum and maize following preâ€emergence waterlogging. Agronomy Journal, 2021, 113, 5602-5611.	1.8	4
47	Tracing plant–environment interactions from organismal to planetary scales using stable isotopes: a mini review. Emerging Topics in Life Sciences, 2021, 5, 301-316.	2.6	3
48	Soil microbial communities are not altered by garlic mustard in recently invaded central Illinois forests. Ecosphere, 2022, 13, .	2.2	2
49	Complete Genome Sequence of Geobacter sp. Strain FeAm09, a Moderately Acidophilic Soil Bacterium. Microbiology Resource Announcements, 2021, 10, .	0.6	1