Georg Lietz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3402470/publications.pdf Version: 2024-02-01

CEORC LIETZ

#	Article	IF	CITATIONS
1	Evidence to Underpin Vitamin A Requirements and Upper Limits in Children Aged 0 to 48 Months: A Scoping Review. Nutrients, 2022, 14, 407.	4.1	2
2	Use of stable isotopes to study bioconversion and bioefficacy of provitamin A carotenoids. Methods in Enzymology, 2022, , .	1.0	2
3	From carotenoid intake to carotenoid blood and tissue concentrations – implications for dietary intake recommendations. Nutrition Reviews, 2021, 79, 544-573.	5.8	113
4	Phenolic, apparent antioxidant and nutritional composition of quinoa (<i>Chenopodiumquinoa</i> Willd.) seeds. International Journal of Food Science and Technology, 2021, 56, 3245-3254.	2.7	26
5	Reduced plasma carotenoids in individuals suffering from metabolic diseases with disturbances in lipid metabolism: a systematic review and meta-analysis of observational studies. International Journal of Food Sciences and Nutrition, 2021, 72, 879-891.	2.8	5
6	Biofortified and fortified maize consumption reduces prevalence of low milk retinol, but does not increase vitamin A stores of breastfeeding Zambian infants with adequate reserves: a randomized controlled trial. American Journal of Clinical Nutrition, 2021, 113, 1209-1220.	4.7	8
7	Determination of Vitamin A Total Body Stores in Children from Dried Serum Spots: Application in a Low- and Middle-Income Country Community Setting. Journal of Nutrition, 2021, 151, 1341-1346.	2.9	3
8	Use of Model-Based Compartmental Analysis and a Super-Child Design to Study Whole-Body Retinol Kinetics and Vitamin A Total Body Stores in Children from 3 Lower-Income Countries. Journal of Nutrition, 2020, 150, 411-418.	2.9	29
9	Hepatic Lipoprotein Export and Remission of Human Type 2 Diabetes after Weight Loss. Cell Metabolism, 2020, 31, 233-249.e4.	16.2	102
10	Overlapping Vitamin A Intervention Programs: Should We Be Concerned with Excessive Intakes?. Journal of Nutrition, 2020, 150, 2849-2851.	2.9	5
11	Updated Estimates of Vitamin a Total Body Stores in Healthy Young Adults Determined by Compartmental Modeling with Vitamin a Intake Added as Data (FS06-07-19). Current Developments in Nutrition, 2019, 3, nzz029.FS06-07-19.	0.3	1
12	The Influence of Vitamin a on Molecular Bio-mineral Tissue Development in Pigs (P02-012-19). Current Developments in Nutrition, 2019, 3, nzz029.P02-012-19.	0.3	0
13	Response of Nutritional Biomarkers in Bangladeshi Subjects Given an Immunological Challenge (P10-096-19). Current Developments in Nutrition, 2019, 3, nzz034.P10-096-19.	0.3	0
14	The Effect of Chronic High Dose Vitamin a Supplementation on Lipid Metabolism in Adipose Tissue (P02-013-19). Current Developments in Nutrition, 2019, 3, nzz029.P02-013-19.	0.3	0
15	Micronutrient status assessment in humans: Current methods of analysis and future trends. TrAC - Trends in Analytical Chemistry, 2018, 102, 110-122.	11.4	24
16	A pilot study investigating reactive oxygen species production in capillary blood after a marathon and the influence of an antioxidant-rich beetroot juice. Applied Physiology, Nutrition and Metabolism, 2018, 43, 303-306.	1.9	8
17	Intestinal β-carotene bioconversion in humans is determined by a new single-sample, plasma isotope ratio method and compared with traditional and modified area-under-the-curve methods. Archives of Biochemistry and Biophysics, 2018, 653, 121-126.	3.0	9
18	Does selection for growth rate in broilers affect their resistance and tolerance to Eimeria maxima?. Veterinary Parasitology, 2018, 258, 88-98.	1.8	37

GEORG LIETZ

#	Article	IF	CITATIONS
19	Buckwheat and CVD Risk Markers: A Systematic Review and Meta-Analysis. Nutrients, 2018, 10, 619.	4.1	36
20	Effects of Quinoa (Chenopodium quinoa Willd.) Consumption on Markers of CVD Risk. Nutrients, 2018, 10, 777.	4.1	54
21	Association of oily fish intake, sex, age, BMI and <i>APOE</i> genotype with plasma long-chain <i>n</i> -3 fatty acid composition. British Journal of Nutrition, 2018, 120, 23-32.	2.3	15
22	A Simple Plasma Retinol Isotope Ratio Method for Estimating β-Carotene Relative Bioefficacy in Humans: Validation with the Use of Model-Based Compartmental Analysis. Journal of Nutrition, 2017, 147, 1806-1814.	2.9	12
23	Current Capabilities and Limitations of Stable Isotope Techniques and Applied Mathematical Equations in Determining Whole-Body Vitamin A Status. Food and Nutrition Bulletin, 2016, 37, S87-S103.	1.4	33
24	Plasma Retinol Kinetics and β-Carotene Bioefficacy Are Quantified by Model-Based Compartmental Analysis in Healthy Young Adults with Low Vitamin A Stores. Journal of Nutrition, 2016, 146, 2129-2136.	2.9	29
25	Biomarkers of Nutrition for Development (BOND)—Vitamin A Review. Journal of Nutrition, 2016, 146, 1816S-1848S.	2.9	317
26	Dietary betaâ€carotene and lutein metabolism is modulated by the APOE genotype. BioFactors, 2016, 42, 388-396.	5.4	11
27	Maximizing the benefits and minimizing the risks of intervention programs to address micronutrient malnutrition: symposium report. Maternal and Child Nutrition, 2016, 12, 940-948.	3.0	12
28	A Retinol Isotope Dilution Equation Predicts Both Group and Individual Total Body Vitamin A Stores in Adults Based on Data from an Early Postdosing Blood Sample. Journal of Nutrition, 2016, 146, 2137-2142.	2.9	35
29	Consumption of Fish Oil Providing Amounts of Eicosapentaenoic Acid and Docosahexaenoic Acid That Can Be Obtained from the Diet Reduces Blood Pressure in Adults with Systolic Hypertension: A Retrospective Analysis. Journal of Nutrition, 2016, 146, 516-523.	2.9	56
30	Uncertainties of assessing total body vitamin A stores in community settings in low-income countries using the stable-isotope dilution methodology. American Journal of Clinical Nutrition, 2015, 102, 520-521.	4.7	5
31	An LC/MS/MS method for stable isotope dilution studies of β-carotene bioavailability, bioconversion, and vitamin A status in humans. Journal of Lipid Research, 2014, 55, 319-328.	4.2	34
32	CD36 and SR-BI Are Involved in Cellular Uptake of Provitamin A Carotenoids by Caco-2 and HEK Cells, and Some of Their Genetic Variants Are Associated with Plasma Concentrations of These Micronutrients in Humans. Journal of Nutrition, 2013, 143, 448-456.	2.9	109
33	An LC-MS/MS method for stable isotope dilution studies of γ-carotene bioefficacy and vitamin A status in humans. Proceedings of the Nutrition Society, 2013, 72, .	1.0	0
34	Gender differences in retinol metabolism are independent of β-carotene bioconversion. Proceedings of the Nutrition Society, 2013, 72, .	1.0	1
35	Host Factors That Affect Carotenoid Metabolism. , 2013, , 129-140.		3
36	Consequences ofÂCommonÂGenetic Variations onÂβ-Carotene Cleavage forÂVitamin A Supply. Oxidative Stress and Disease, 2013, , 383-396.	0.3	1

#	Article	IF	CITATIONS
37	Single Nucleotide Polymorphisms Upstream from the β-Carotene 15,15'-Monoxygenase Gene Influence Provitamin A Conversion Efficiency in Female Volunteers4. Journal of Nutrition, 2012, 142, 161S-165S.	2.9	119
38	Importance of β,βâ€carotene 15,15′â€monooxygenase 1 (BCMO1) and β,βâ€carotene 9′,10′â€dioxyg nutrition and health. Molecular Nutrition and Food Research, 2012, 56, 241-250.	enase 2 (B	CDO2) in
39	Beta-Carotene Reduces Body Adiposity of Mice via BCMO1. PLoS ONE, 2011, 6, e20644.	2.5	133
40	β-Carotene Is an Important Vitamin A Source for Humans. Journal of Nutrition, 2010, 140, 2268S-2285S.	2.9	402
41	Molecular and dietary regulation of β,β-carotene 15,15′-monooxygenase 1 (BCMO1). Archives of Biochemistry and Biophysics, 2010, 502, 8-16.	3.0	105
42	β-Carotene conversion products and their effects on adipose tissue. Genes and Nutrition, 2009, 4, 179-187.	2.5	61
43	A network approach to micronutrient genetics: interactions with lipid metabolism. Current Opinion in Lipidology, 2009, 20, 112-120.	2.7	15
44	Xanthophyll and Hydrocarbon Carotenoid Patterns Differ in Plasma and Breast Milk of Women Supplemented with Red Palm Oil during Pregnancy and Lactation. Journal of Nutrition, 2006, 136, 1821-1827.	2.9	51
45	Plasma Levels of Retinol, Carotenoids, and Tocopherols in Relation to Dietary Pattern among Pregnant Tanzanian Women. International Journal for Vitamin and Nutrition Research, 2003, 73, 323-333.	1.5	20
46	Can the EPIC food-frequency questionnaire be used in adolescent populations?. Public Health Nutrition, 2002, 5, 783-789.	2.2	46
47	Comparison of the effects of supplemental red palm oil and sunflower oil on maternal vitamin A status. American Journal of Clinical Nutrition, 2001, 74, 501-509.	4.7	84