Keying Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340239/publications.pdf Version: 2024-02-01

KEVING GUO

#	Article	IF	CITATIONS
1	Designing Electrochemical Biosensing Platforms Using Layered Carbon-Stabilized Porous Silicon Nanostructures. ACS Applied Materials & Interfaces, 2022, 14, 15565-15575.	8.0	10
2	Pathogen and Protein Detection using Organic Electronics. , 2022, , .		0
3	Conjugated Polymer based Electronics for Diagnostics in Physiological Media. , 2022, , .		Ο
4	Formation and biofunctionalisation of polymer photonic crystals by replica moulding from porous silicon. Materials Letters, 2021, 284, 128907.	2.6	1
5	Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nature Biomedical Engineering, 2021, 5, 666-677.	22.5	235
6	Carbon-stabilized porous silicon as novel voltammetric sensor platforms. Electrochimica Acta, 2021, 377, 138077.	5.2	9
7	High-adhesion vertically aligned gold nanowire stretchable electrodes <i>via</i> a thin-layer soft nailing strategy. Nanoscale Horizons, 2019, 4, 1380-1387.	8.0	11
8	Porous Silicon Nanostructures as Effective Faradaic Electrochemical Sensing Platforms. Advanced Functional Materials, 2019, 29, 1809206.	14.9	23
9	Microfluidic Cell Microarray Platform for High Throughput Analysis of Particle–Cell Interactions. Analytical Chemistry, 2018, 90, 4338-4347.	6.5	19
10	Promising cobalt oxide and cobalt oxide/silver photocathodes for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 161, 46-51.	6.2	29
11	Crossed flow microfluidics for high throughput screening of bioactive chemical–cell interactions. Lab on A Chip, 2017, 17, 501-510.	6.0	20
12	High-efficiency nanorod-nanosheet arrays sandwich photoelectrode for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2016, 41, 13359-13367.	7.1	20
13	Titanium dioxide/tungsten trioxide nanoarrays film for high electrochromic performance. Electrochimica Acta, 2015, 173, 117-123.	5.2	23
14	AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2015, 179, 61-68.	20.2	81
15	Preparation and enhanced photoelectrochemical performance of selenite-sensitized zinc oxide core/shell composite structure. Journal of Materials Chemistry A, 2015, 3, 4239-4247.	10.3	30
16	Jalpaite Ag3CuS2: a novel promising ternary sulfide absorber material for solar cells. Chemical Communications, 2015, 51, 2597-2600.	4.1	28
17	Trilaminar graphene/tremella-like CuInS2/graphene oxide nanofilms and the enhanced activity for photoelectrochemical water splitting. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	14
18	Preparation and Photocatalysis of Schlumbergera bridgesii-Like CdS Modified One-Dimensional TiO2 Nanowires on Zeolite. Journal of Materials Engineering and Performance, 2015, 24, 700-708.	2.5	4

Keying Guo

#	Article	IF	CITATIONS
19	Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers. Journal of Power Sources, 2015, 285, 185-194.	7.8	30
20	High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Applied Catalysis B: Environmental, 2015, 163, 179-188.	20.2	128
21	Dendritic TiO ₂ /ln ₂ S ₃ /AgInS ₂ Trilaminar Core–Shell Branched Nanoarrays and the Enhanced Activity for Photoelectrochemical Water Splitting. Small, 2014, 10, 3153-3161.	10.0	76
22	Three-dimensional flower-like hybrid BiOI–zeolite composites with highly efficient adsorption and visible light photocatalytic activity. RSC Advances, 2014, 4, 45540-45547.	3.6	20
23	Zeolite-based CuO nanotubes catalysts: investigating the characterization, mechanism, and decolouration process of methylene blue. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	9
24	High-Efficiency AgInS ₂ -Modified ZnO Nanotube Array Photoelectrodes for All-Solid-State Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17119-17125.	8.0	55
25	Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance. Journal of Sol-Gel Science and Technology, 2014, 72, 92-99.	2.4	18
26	Preparation of cauliflower-like CdS/ZnS/ZnO nanostructure and its photoelectric properties. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	4
27	Hierarchical TiO ₂ –CuInS ₂ core–shell nanoarrays for photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2014, 16, 16204.	2.8	39
28	Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance. Applied Catalysis B: Environmental, 2014, 154-155, 27-35.	20.2	47
29	Fabrication of ZnO/SrTiO3 nanoarrays and its photoelectrochemical performances. International Journal of Hydrogen Energy, 2014, 39, 13408-13414.	7.1	26
30	Trilaminar ZnO/ZnS/Sb2S3 nanotube arrays for efficient inorganic–organic hybrid solar cells. RSC Advances, 2014, 4, 23807.	3.6	40
31	Synthesis of metal sulfide sensitized zinc oxide-based core/shell/shell nanorods and their photoelectrochemical properties. Journal of Power Sources, 2014, 268, 388-396.	7.8	36
32	PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties. International Journal of Hydrogen Energy, 2013, 38, 10226-10234.	7.1	58
33	Fabrication of ZnO/CuS core/shell nanoarrays for inorganic–organic heterojunction solar cells. Materials Chemistry and Physics, 2013, 141, 804-809.	4.0	31